Металлическая связь схема. Металлическая и водородная химические связи

Классификация материалов

В настоящее время все современные материалы принято соответствующим образом классифицировать.

Наибольшее значение в технике имеют классификации по функциональным и структурным признакам материалов.

Главным критерием классификации материалов по структурным признакам является агрегатное состояние, в зависимости от которого их подразделяют на следующие типы: твердые материалы, жидкости, газы, плазма.

Твердые материалы в свою очередь делят на кристаллические и некристаллические.

Кристаллические материалы можно разделить по типу связи между частицами: атомные (ковалентные), ионные, металлические, молекулярные (Рис.2.1.).

Типы связей между атомами (молекулами) в кристаллах

Атом состоит из положительно заряженного ядра и движущихся вокруг него электронов (отрицательно заряженных). Атом в стационарном состоянии электрически нейтрален. Различают внешние (валентные) электроны, связь которых с ядром незначительна и внутренние – прочно связанные с ядром.

Формирование кристаллической решетки происходит следующим образом. При переходе из жидкого в кристаллическое состояние расстояние между атомами сокращается, а силы взаимодействия между ними возрастают.

Связь между атомами осуществляется электростатическими силами, т.е. по природе связь едина – имеет электрическую природу, но проявляется по-разному в разных кристаллах. Различают следующие типы связей: ионную, ковалентную, полярную, металлическую.

Ковалентный вид связи

Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.

Она может быть образована атомами одного итого же элемента и тогда она неполярная; например, такая ковалентная связь существует в молекулах одноэлементных газов H 2 , O 2 , N 2 , Cl 2 и др.

Ковалентная связь может быть образована атомами разных элементов, сходных по химическому характеру, и тогда она полярная; например, такая ковалентная связь существует в молекулах H 2 O, NF 3 , CO 2 .

Ковалентная связь образуется между атомами элементов, обладающих электроотрицательным характером.

При этом типе связи осуществляется обобществление свободных валентных электронов соседних атомов. Стремясь приобрести устойчивую валентную оболочку, состоящую из 8 электронов, атомы объединяются в молекулы, образуя одну или несколько пар электронов, которые становятся общими для соединяющихся атомов, т.е. одновременно входят в состав электронных оболочек двух атомов.

Материалы с ковалентной связью очень хрупки, но имеют высокую твердость (алмаз). Это, как правило, диэлектрики или полупроводники (германий, кремни) т.к. электрические заряды связаны между собой, а свободные электроны отсутствуют.

Ковалентной связью соединены атомы в молекулах простых газов (Н 2 , Cl 2 и др.)

Единственным известным человеку веществом с примером ковалентной связи между металлом и углеродом является цианокобаламин, известный как витамин B12.

Кристаллы с ионной связью (NaCl)

Ионная связь - это химическая связь, образованная за счет электростатического притяжения между катионами и анионами .

Образование таких кристаллов образуется переходом электронов атомов одного типа к атомам другого от Na к Cl. Атом, потерявший электрон, становится положительно заряженным ионом, присоединивший электрон – отрицательным ионом. Сближение ионов разных знаков происходит до тех пор пока силы отталкивания ядра и электронных оболочек не уравновесят силы притяжения. Ионную связь имеют большинство минеральных диэлектриков и некоторые органические материалы.(NaCl, CsCl, CaF2.)

Твердые тела с ионной связью в большинстве случаев механически прочны, температуростойчивы, но часто хрупки. Материалы с этим типом связи в качестве конструкционных не применяются

Металлический тип связи

В металлах связь между отдельными атомами образуется за счет взаимодействия положительно заряженных ядер и коллективизированных электронов, которые свободно движутся в межатомных пространствах. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Такая связь называется металлической.

Наличие свободных электронов приводит к высокой электропроводности и теплопроводности металла, а также является причиной блеска металлов. Ковкость металлов объясняется перемещением и скольжением отдельных слоев атомов.

Практически в любом материале имеет место не один, а несколько типов связей. Свойства же материалов определяются преобладающими видами химических связей атомов и молекул вещества материала.

Из атомно-кристаллических материалов, в структуре которых преобладают ковалентные связи , наибольшее значение в технике имеют полиморфные модификации углерода и полупроводниковые материалы на основе элементов IV группы периодической системы элементов. Типичными представителями первых являются алмаз и графит - наиболее распространенная в земной коре и устойчивая модификация углерода со слоистой структурой. Полупроводниковые кристаллические германий и кремний являются основными материалами полупроводниковой электроники.

Большой интерес представляют некоторые соединения с ковалентной связью, такие как Fe 3 C, SiO, AlN - эти соединения играют большую роль в технических сплавах.

В обширную совокупность ионно-кристаллических материалов, имеющих кристаллическую структуру с ионным типом связей, входят оксиды металлов (соединения металлов с кислородом), которые являются составляющими важнейших руд, технологических присадок при плавке металлов, а также химические соединения металлов и неметаллов (бором, углеродом, азотом), которые используются как компоненты сплавов.

Металлический тип связи характерен для более чем 80 элементов таблицы Менделеева.

К кристаллическим твердым телам можно отнести и материалы со структурой молекулярных кристаллов , которая характерна для многих полимерных материалов, молекулы которых состоят из большого числа повторяющихся звеньев. Это биополимеры - высокомолекулярные природные соединения и их производные (в том числе древесина); синтетические полимеры, получаемые из простых органических соединений, молекулы которых имеют неорганические главные цепи и не содержат органических боковых групп. К числу неорганических полимеров относят силикаты и вяжущие. Природные силикаты - класс важнейших породообразующих минералов, составляющих около 80% массы земной коры. К неорганическим вяжущим материалам относятся цемент, гипс, известь и др. Молекулярные кристаллы инертных газов - элементов VIII группы периодической системы - испаряются при низких температурах, не переходя в жидкое состояние. Они находят применение в криоэлектронике, занимающейся созданием электронных приборов на основе явлений, которые имеют место в твердых телах при криогенных температурах.

Рис. 1.2. Расположение атомов в кристаллическом (а) и аморфном (б) веществе

Второй класс материалов составляют некристаллические твердые материалы . Ихразделяют по признаку упорядоченности и стабильности структуры на аморфные, стеклообразные и нестеклообразныые в полуразупорядоченном состоянии.

Типичными представителями аморфных материалов являются аморфные полупроводники, аморфные металлы и сплавы.

В группу стеклообразных материалов входят: ряд органических полимеров (полиметилакрилат при температурах ниже 105 °С, поливинилхлорид -ниже 82 °С и другие); многие неорганические материалы - неорганическое стекло на основе оксидов кремния, бора, алюминия, фосфора и т. д.; многие материалы для каменного литья - базальты и диабазы со стеклообразной структурой, металлургические шлаки, природные карбонаты с островной и цепочечной структурой (доломит, мергель, мрамор и др).

В нестеклообразном полуразупорядоченном состоянии находятся студни (структурированные системы полимер - растворитель, образующиеся при затвердевании растворов полимеров или набухании твердых полимеров), многие синтетические полимеры в высокоэластическом состоянии, каучуки и резины, большинство материалов на основе биополимеров, в том числе текстильные и кожевенные материалы, а также органические вяжущие материалы - битумы, дегти, пеки и др.

По функциональному назначению технические материалы делят на следующие группы.

Конструкционные материалы - твердые материалы, предназначенные для изготовления изделий, подвергаемых механическому воздействию. Они должны обладать комплексом механических свойств, обеспечивающих требуемые работоспособность и ресурс изделий при воздействии рабочей среды, температуры и других факторов.

Рис. 1.1. Классификация твердых кристаллических материалов по структурному признаку

Одновременно к ним предъявляют технологические требования, определяющие наименьшую трудоемкость изготовления деталей и конструкций, и экономические, касающиеся стоимости и доступности материала, что очень важно в условиях массового производства. К конструкционным материалам можно отнести металлы, силикаты и керамику, полимеры, резину, древесину, многие композиционные материалы.

Электротехнические материалы характеризуются особыми электрическими и магнитными свойствами и предназначены для изготовления изделий, применяемых для производства, передачи, преобразования и потребления электроэнергии. К ним относятся магнитные материалы, проводники, полупроводники, а также диэлектрики в твердой жидкой и газообразной фазах.

Триботехнические материалы предназначены для применения в узлах трения с целью регулирования параметров трения и изнашивания для обеспечения заданных работоспособности и ресурса этих узлов. Основными видами та­ких материалов являются смазочные, антифрикционные и фрикционные. К первым относят смазки в твердой (графит, тальк, дисульфид молибдена и др., жидкой (смазочные масла) и газообразной фазах (воздух, пары углеводородов и другие газы). В совокупность антифрикционных материалов входят сплавы цветных металлов (баббиты, бронзы и др.), серый чугун, пластмассы (текстолит, материалы на основе фторопластов и др.), металлокерамические композиционные материалы (бронзографит, железографит и др.), некоторые виды древесины и древесно-слоистых пластиков, резины, многие композиты. Фрикционные материалы имеют большой коэффициент трения и высокое сопротивление изнашиванию. К ним относятся некоторые виды пластмасс, чугунов, металлокерамики и других композиционных материалов.

Инструментальные материалы отличаются высокими показателями твердости, износоустойчивости и прочности, они предназначены для изготовления режущего, мерительного, слесарно-монтажного и другого инструмента. Сюда относятся такие материалы, как инструментальная сталь и твердые сплавы, алмаз и некоторые виды керамических материалов, многие композиционные материалы.

Рабочие тела - газообразные и жидкие материалы, с помощью которых энергию преобразуют в механическую работу, холод, теплоту. Рабочими телами служат водяной пар в паровых машинах и турбинах; аммиак, углекислота, фреон и другие хладагенты в холодильных машинах; масла в гидроприводе; воздух в пневматических двигателях; газообразные продукты сгорания органического топлива в газовых турбинах, двигателях внутреннего сгорания.

Топливо - горючие материалы, основной частью которых является углерод, применяемые с целью получения при их сжигании тепловой энергии. По происхождению топливо делят на природное (нефть, уголь, природный газ, горючие сланцы, торф, древесина) и искусственное (кокс, моторные топлива, генераторные газы и др.); по типу машин, в которых оно сжигается, - на ракетное, моторное, ядерное, турбинное и т. д.

Металлическая связь. Свойства металлической связи.

Металлическая связь - химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединœений.

Механизм металлической связи

Во всœех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента͵ удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. По этой причине в большинстве случаев проявляются высокие координационные числа (к примеру, 12 или 8). Когда два атома металла сближаются, орбитали их внешних оболочек перекрываются, образуя молекулярные орбитали. В случае если подходит третий атом, его орбиталь перекрывается с орбиталями первых двух атомов, что дает еще одну молекулярную орбиталь. Когда атомов много, возникает огромное число трехмерных молекулярных орбиталей, простирающихся во всœех направлениях. Вследствие многократного перекрывания орбиталей валентные электроны каждого атома испытывают влияние многих атомов.

Характерные кристаллические решётки

Большинство металлов образует одну из следующих высокосимметричных решёток с плотной упаковкой атомов: кубическую объёмно центрированную, кубическую гранецентрированную и гексагональную.

В кубической объёмно центрированной решётке (ОЦК) атомы расположены в вершинах куба и один атом в центре объёма куба. Кубическую объёмно центрированную решётку имеют металлы: Pb, K, Na, Li, β-Ti, β-Zr, Ta, W, V, α-Fe, Cr, Nb, Ba и др.

В кубической гранецентрированной решётке (ГЦК) атомы расположены в вершинах куба и в центре каждой грани. Решётку такого типа имеют металлы: α-Ca, Ce, α-Sr, Pb, Ni, Ag, Au, Pd, Pt,Rh, γ-Fe, Cu, α-Co и др.

В гексагональной решётке атомы расположены в вершинах и центре шестигранных оснований призмы, а три атома - в средней плоскости призмы. Такую упаковку атомов имеют металлы:Mg, α-Ti, Cd, Re, Os, Ru, Zn, β-Co, Be, β-Ca и др.

Другие свойства

Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей. Также важным свойством является металлическая ароматичность.

Металлы хорошо проводят тепло и электричество, они достаточно прочны, их можно деформировать без разрушения. Некоторые металлы ковкие (их можно ковать), некоторые тягучие (из них можно вытягивать проволоку). Эти уникальные свойства объясняются особым типом химической связи, соединяющей атомы металлов между собой – металлической связью.

Металлы в твердом состоянии существуют в виде кристаллов из положительных ионов, как бы “плавающих” в море свободно движущихся между ними электронов.

Металлическая связь объясняет свойства металлов, в частности, их прочность. Под действием деформирующей силы решетка металла может изменять свою форму, не давая трещин, в отличие от ионных кристаллов.

Высокая теплопроводность металлов объясняется тем, что если нагреть кусок металла с одной стороны, то кинœетическая энергия электронов увеличится. Это увеличение энергии распространится в “ электронном море” по всœему образцу с большой скоростью.

Становится понятной и электрическая проводимость металлов. В случае если к концам металлического образца приложить разность потенциалов, то облако делокализованных электронов будет сдвигаться в направлении положительного потенциала:данный поток электронов, движущихся в одном направлении, и представляет собой всœем знакомый электрический ток.

Металлическая связь. Свойства металлической связи. - понятие и виды. Классификация и особенности категории "Металлическая связь. Свойства металлической связи." 2017, 2018.

Цель урока

  • Дать представление о металлической химической связи.
  • Научится записывать схемы образования металлической связи.
  • Ознакомится с физическими свойствами металлов.
  • Научится четко разделять виды химических связей .

Задачи урока

  • Узнать, как взаимодействуют между собой атомы металлов
  • Определить, каким образом влияет металлическая связь на свойства образованных ею веществ

Основные термины:

  • Электроотрицательность - химическое свойство атома, которое является количественной характеристикой способности атома в молекуле притягивать к себе общие электронные пары.
  • Химическая связь -явление взаимодействия атомов, из-за перекрытия электронных облаков взаимодействующих атомов.
  • Металическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.
  • Ковалентная связь - химическая связь, образуется с помощью перекрытия пары валентных электроннов. Обеспечивающие связь электроны называются общей электронной парой. Бывает 2-х видов: полярная и не полярная.
  • Ионная связь - химическая связь,которая образуется между атомами неметалов, при которой общая электронная пара переходит к атому с большей электроотрицательностью. В итоге атомы притягиваются, как разноименно заряженные тела.
  • Водородная связь - химическая связь между электроотрицательным атомом и атомом водорода H, связанным ковалентно с другим электроотрицательным атомом. В качестве электроотрицательных атомов могут выступать N, O или F. Водородные связи могут быть межмолекулярными или внутримолекулярными.

    ХОД УРОКА

Металлическая химическая связь

Определите элементы ставшие не в ту «очередь».Почему?
Ca Fe P K Al Mg Na
Какие элементы из таблицы Менделеева называются металлами?
Сегодня мы узнаем какие свойства есть у металлов, и как они зависят от связи которая образуется между йонами металов.
Для начала вспомним месторасполажения металлов в периодической системе?
Металлы как мы все знаем обычно существуют не в виде изолированных атомов, а в форме куска, слитка или металлического изделия. Выясним, что собирает атомы металла в целостном объеме.

На примере мы видим кусок золота. И кстати уникальным металлом является золото. С помощью ковки из чистого золота можно сделать фольгу толщиной 0,002 мм! такой нончайший лист фольги почти прозрачный и имеет зелёный оттенок просвете. В итоге из слитка золота размером со спичечный коробок можно получить тонкую фольгу, которая покроет площадь тенисного корта.
В химическом отношении все металы характеризуются легкостью отдачи валентных электронов, и как следствие образование положительно заряженных ионов и проявлять только положительную окисленность. Именно поэтому металы в свободном состоянии являются востановителями. Общей особенностью атомов металов являются большие размеры по отношению к неметалам. Внешние эллектроны находятся на больших расстояниях от ядра и поэтому слабо с ним связаны, следовательно легко отрываются.
Атомы большего колличества металлов на внешнем уровне имеют маленькое колличество электронов – 1,2,3. Эти электроны легко отрываются и атомы металлов становятся ионами.
Ме0 – n ē ⇆ Men+
атомы метала – електроны внешн. орбиты ⇆ ионы метала

Таким образом оторвавшиеся электроны могут перемещатся от одного иона к другому тоесть становятся свободными, и как бы связывая их в единое целое.Поэтому получается, что все оторвавшиеся электроны евляются общими, так как нельзя понять какой эллектрон принадлежит какому из атомов металла.
Электроны могут обьединятся с катионами, тогда временно образуются атомы, от которых сопять потом отрываются электроны. Этот процесс происходит постоянно и без остановки. Получается, что в объеме металла атомы непрерывно превращаются в ионы и наоборот. При этом небольшое число общих электронов связывает большое число атомов и ионов металла. Но важно, что число электронов в металле равно общему заряду положительных ионов, тоесть получается, что в целом металл остается электронейтральным.
Такой процесс представляют как модель - ионы металла находятся в облаке из электронов. Такое электронное облако называют «электронным газом».

Вот например на данной картинке мы видим как электрончики двигаются среди неподвижныхйонов внутри кристалической решетки метала.

Рис. 2. Движение электроннов

Для того чтоб лучше понять, что такое Электронный газ и как он ведет себя в химических реакциях разных металлов посмотрим интересное видео. (золото в этом видео упоминается исключительно как цвет!)

Теперь мы можем записать определение: металлическая связь - это связь в металлах между атомами и ионами, образованная за счет обобществления электронов.

Давайте сравним все виды связей которые мы знаем И закрепим, чтобы лучше различать их, для этого посмотрим видео.

Металлическая связь бывает не только в чистых металах но также характерна для смесей разных металов, сплавов в разных агрегатных состояниях.
Металлическая связь имеет важное значение и обуславливает основные свойства металлов
- электропроводность – беспорядочное движение електронов в объеме металла. Но при небольшой разности потенциалов, чтобы электроны двигались упорядоченно. Металами с лучшей проводимостью являются Ag, Cu, Au, Al.
- пластичность
Связи между слоями металла не очень значительны, это позволяет перемещать слои под нагрузкой (деформировать металл не ломая его). Наилучше деформирующиеся металы (мягкие)Au, Ag, Cu.
- металлический блеск
Электронный газ отражает почти все световые лучи. Вот почему чистые металлы так сильно блестят и чаще всего имеют сенрый или белый цвет. Металы являющиеся наилучшими отражателями Ag, Cu, Al, Pd, Hg

Домашнее задание

Упражнение 1
Выбрать формулы веществ которые имеют
а) ковалентную полярную связь: Cl2, KCl, NH3, O2, MgO, CCl4, SO2;
б) с ионную связь: HCl, KBr, P4, H2S, Na2O, CO2, CaS.
Упражнение 2
Вычеркните лишнее:
а) CuCl2, Al, MgS
б) N2, HCl, O2
в) Ca, CO2, Fe
г) MgCl2, NH3, H2

Металлический натрий , металлический литий, и остальные щелочные металлы меняют цвет пламени. Металлический литий и его соли придают огню --красный цвет, металлический натрий и соли натрия - жёлтый, металлический калий и его соли - фиолетовый, а рубидия и цезия - тоже фиолетовый, но более светлый.

Рис. 4. Кусок металического лития

Рис. 5. Окрашивание пламени металами

Литий (Li). Металлический литий, как и металлический натрий, относится к щелочным металлам. Оба растворяются в воде. Натрий, растворяясь в воде образует едкий натр –очень сильную кислоту. При растворении щелочных металов в воде выделяется много тепла и газа (водорода). Такие металы желательно не трогать руками, так как можно обжечся.

Список литературы

1. Урок по теме «Металлическая химическая связь», учителя химии Тухта Валентины Анатольевны МОУ "Есеновичская СОШ"
2. Ф. А. Деркач "Химия", - научно-методическое пособие. – Киев, 2008.
3. Л. Б. Цветкова «Неорганическая химия» – 2-е издание, исправленное и дополненное. – Львов, 2006.
4. В. В. Малиновский, П. Г. Нагорный «Неорганическая химия» - Киев, 2009.
5. Глинка Н.Л. Общая химия. – 27 изд./ Под. ред. В.А. Рабиновича. – Л.: Химия, 2008. – 704 с.ил.

Отредактировано и выслано Лисняк А.В.

Над уроком работали:

Тухта В.А.

Лисняк А.В.

Поставить вопрос о современном образовании, выразить идею или решить назревшую проблему Вы можете на Образовательном форуме , где на международном уровне собирается образовательный совет свежей мысли и действия. Создав блог, Химия 8 класс

Металлическая связь

В результате электростатического притяжения меж­ду катионом и анионом образуется, молекула.

Ионная связь

Теорию ионной связи предложил в 1916 ᴦ. немецкий ученый В. Коссель. Эта теория объясняет образование связей между атомами типичных металлов и атома­ми типичных неметаллов: CsF, CsCl, NaCl, KF, KCl, Na 2 O и др.

Согласно этой теории, при образовании ионной связи атомы типичных металлов отдают электроны, а атомы типичных неметаллов принимают электроны.

В результате этих процессов атомы металлов превра­щаются в положительно заряженные частицы, которые называются положительными ионами или катионами; а атомы неметаллов превращаются в отрицательные ионы - анионы. Заряд катиона равен числу отданных электронов.

Атомы металлов отдают электроны внешнего слоя, а образующиеся ионы имеют завершенные электронные структуры (предвнешнего электронного слоя).

Величина отрицательного заряда аниона равна числу принятых электронов.

Атомы неметаллов принимают такое количество элек­тронов, какое им крайне важно для завершения электрон­ного октета (внешнего электронного слоя).

К примеру: общая схема образования молекулы NaCl из атомов Na и С1: Na°-le = Na +1 Образование ионов

Сl°+1е - = Сl -

Na +1 + Сl - = Nа + Сl -

Na°+ Сl°= Nа + Сl - Соединœение ионов

· Связь между ионами принято называть ионной связью.

Соединœения, которые состоят из ионов, называются ионными соединœениями.

Алгебраическая сумма зарядов всœех ионов в моле­куле ионного соединœения должна быть равна нулю, потому что любая молекула является электронейтраль­ной частицей.

Резкой границы между ионной и ковалентнои связя­ми не существует. Ионную связь можно рассматривать как крайний случай полярной ковалентнои связи, при образовании которой общая электронная пара полнос­тью смещается к атому с большей электроотрицательно­стью.

Атомы большинства типичных металлов на внешнем электронном слое имеют небольшое число электронов (как правило, от 1 до 3); эти электроны называются валент­ными. В атомах металлов прочность связи валентных электронов с ядром невысокая, то есть атомы обладают низкой энергией ионизации. Это обусловливает легкость потери валентных электронов ч превращения атомов ме­талла в положительно заряженные ионы (катионы):

Ме° -nе ® Ме n +

В кристаллической структуре металла валентные элек­троны обладают способностью легко перемещаться от од­ного атома к другому, что приводит к обобществлению электронов всœеми сосœедними атомами. Упрощенно строе­ние кристалла металла представляется следующим обра­зом: в узлах кристаллической решетки находятся ионы Ме п+ и атомы Ме°, а между ними относительно свободно перемещаются валентные электроны, осуществляя связь между всœеми атомами и ионами металла (рис. 3). Это осо­бый тип химической связи, называемой металлической.

· Металлическая связь - связь между атомами и ионами металлов в кристаллической решетке, осу­ществляемая обобществленными валентными электронами.

Благодаря этому типу химической связи металлы об­ладают определœенным комплексом физических и хими­ческих свойств, отличающим их от неметаллов.

Рис. 3. Схема кристаллической решетки металлов.

Прочность металлической связи обеспечивает устой­чивость кристаллической решетки и пластичность метал­лов (способность подвергаться разнообразной обработке без разрушения). Свободное передвижение валентных электронов позволяет металлам хорошо проводить элект­рический ток и тепло. Способность отражать световые вол­ны (ᴛ.ᴇ. металлический блеск) также объясняется строе­нием кристаллической решетки металла.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, наиболее характерными физическими свойствами металлов исходя из наличия металли­ческой связи являются:

■кристаллическая структура;

■металлический блеск и непрозрачность;

■пластичность, ковкость, плавкость;

■высокие электро- и теплопроводность; и склонность к образованию сплавов.

Металлическая связь - понятие и виды. Классификация и особенности категории "Металлическая связь" 2017, 2018.

  • - Металлическая связь

  • - Металлическая связь

    Само название «металлическая связь» указывает, что речь пойдет о внутренней структуре металлов. Атомы большинства металлов на внешнем энергетическом уровне содержат небольшое число валентных электронов по сравнению с общим числом внешних энергетически близких... .


  • - Металлическая связь

    Металлическая связь основана на обобществлении валентных электронов, принадлежащих не двум, а практически всем атомам металла в кристалле. В металлах валентных электронов намного меньше, чем свободных орбиталей. Это создает условия для свободного перемещения... .


  • - Металлическая связь

    Существенные сведения относительно природы химической связи в металлах модно получить на основании двух характерных особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электропроводностью и... .


  • - Металлическая связь

    Существенные сведения о природе химической связи в металлах можно получить на основании двух характерных для них особенностей по сравнению с ковалентными и ионными соединениями. Металлы, во-первых, отличаются от других веществ высокой электрической проводимостью и... .


  • - Металлическая связь

    Гибридизация орбиталей и пространственная конфигурация молекул Тип молекулы Исходные орбитали атома А Тип гибридизации Число гибридных орбиталей атома А Пространственная конфигурация молекулы АВ2 АВ3 АВ4 s + p s + p + p s + p + p + p sp sp2 sp3 ... .


  • - Металлическая связь. Свойства металлической связи.

    Металлическая связь - химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов и интерметаллических соединений. Механизм металлической связи Во всех узлах кристаллической решётки расположены... .


  • - Строение молекулы. Теория химической связи. Ионная связь Металлическая связь. Ковалентная связь. Энергия связи. Длина связи. Валентный угол. Свойства химической связи.

    Молекула – наименьшая частица вещества, обладающая его химическими свойствами. Согласно теории химической связи, устойчивому состоянию элемента соответствует структура с электронной формулой внешнего уровня s2p6 (аргон, криптон, радон, и другие). При образовании... .


  • Металлическая связь образуется между атомами в кристалле металла, возникающая за счет перекрытия валентных электронов. Так, что же представляет собой этот вид связи, и в каких соединениях она присутствует?

    Что такое металлическая связь?

    Металлическая химическая связь существует в металлическом кристалле и в жидком расплавленном состоянии. Ее образуют элементы, атомы которых на внешнем уровне имеют мало электронов (1-3) по сравнению с общим числом внешних, энергетически близких орбиталей.

    Рис. 1. Схема образования металлической связи.

    Валентные электроны из-за небольшой энергии ионизации слабо удерживаются в атоме. Так, у атома натрия на один валентный электрон (3S 1) приходится 9 свободных и энергетически близких орбиталей (одна 3s, три 3p и пять 3d).

    Из-за малого значения энергии ионизации валентный электрон слабо удерживается и свободно перемещается не только в пределах 9 своих свободных орбиталей, но при плотной упаковке в кристалле и на свободных орбиталях других атомов, осуществляя связь.

    Химическая связь сильно делокализована: электроны обобществлены («электронный газ») и перемещаются по всему куску металла, в целом электронейтрального, между положительно заряженными ионами.

    Свободное перемещение электронов по кристаллу объясняет ненаправленность и ненасыщенность связи, а также такие физические свойства металлов, как пластичность, блеск, электро- и теплопроводность.

    Рис. 2. Свойства металлической химической связи.

    Характерные кристаллические решетки

    Металлы почти всегда образуют высокосимметричные решетки с плотно приближенными друг к другу атомами. Выделяют три вида кристаллических решеток:

    • кубическая объемно центрированная . В таком виде решетки атомы располагаются на вершине куба и один атом в центре объема куба. Такую решетку имеют следующие металлы: натрий, литий, барий, калий, свинец и многие другие.
    • кубическая гранецентрированная . В таком виде решетки атомы располагаются в вершине куба и в центре каждой грани. Такой тип решетки имеют следующие металлы: церий, стронций, никель, серебро, золото, палладий, платина, медь и многие другие.

    Рис. 3. Кубическая гранецентрированная кристаллическая решетка.

    • гексагональная . В таком виде решетки атомы располагаются в вершине и центрах шестигранной оснований призмы, а три атома находятся в средней плоскости этой призмы.

    Такой тип кристаллической решетки имеют следующие металлы: магний, кадмий, рений, осмий, рутений, бериллий и многие другие.

    Что мы узнали?

    Металлическая связь близка по природе к ковалентной, но отличается от нее тем, что обобществление электронов при ее образовании осуществляется сразу многими атомами. В данной статье дается определение понятию «металлическая связь», а также приведены примеры металлической химической связи.