Элементарная частица не имеющая электрического. Элементарная частица, не имеющая заряда

Делимость электрического заряда. Опыт, подтверждающий делимость электрического заряда. Электронно-ядерная модель атома.

Зарядим один электроскоп, а второй нет, соединим их проволокой, заметим, что половина заряда первого передалась второму. Значит эл. заряд можно делить. Если к первому электроскопу, на котором осталась половина первоначального заряда, снова присоединить незаряженный электроскоп, то на нем останется ¼ от первоначального заряда.

Известно, что в обычном состоянии молекулы и атомы не имеют электрического заряда. Следовательно, нельзя объяснить электризацию их перемещением. Если же предположить, что в природе существуют частицы, имеющие электрический заряд, то при делении заряда должен быть обнаружен предел деления. Это значит, что должна существовать частица с наименьшим зарядом.

Существует ли предел деления заряда? Не может ли получиться заряд такой величины, который уже не поддается дальнейшему делению?

Для деления заряда на маленькие порции его следует передавать не шарам, а маленьким крупинкам металла или жидкости. После чего измеряли заряд, полученный на этих маленьких телах. Опытами было установлено, что возможно получить заряд, который в миллиарды миллиардов раз меньше, чем в рассмотренных нами опытах. Но дальше определенной величины заряд разделить не удавалось. Это позволило предположить, что существует заряженная частица, которая имеет самый малый заряд, который разделить невозможно.

Электрон очень мал. Масса электрона равна 9,1 × 10 -31 кг. Эта масса примерно в 3700 раз меньше массы молекулы водорода, которая является наименьшей из всех молекул.

Электрический заряд – это одно из основных свойств электрона. Нельзя представить, что этот заряд можно снять с электрона. Они неотделимы друг от друга.

Электрический заряд – это физическая величина. Она обозначается буквой q. За единицу электрического заряда принят кулон (Кл). Эта единица названа в честь французского физика Шарля Кулона.

Электрон – частица с наименьшим отрицательным зарядом. Его заряд равен 1,6 × 10 -19 Кл.

*Впервые определить заряд электрона удалось учёным Иоффе и Милликену.

Закон Кулона - сила взаимодействия точечных заряженных тел прямопропорциональна произведению зарядов этих тел и обратнопропорциональна квадрату расстояния между ними.

Точечно заряженные тела – тела, размерами которых в условии данной задачи можно пренебречь.

Заряд ядра равен по абсолютному значению общему заряду электронов атома, можно предположить заряженные частицы. Их назвали протонами. Каждый протон имеет массу, в 1840 раз большую, чем масса электрона. Атом в целом не имеет заряда , он нейтрален, потому что положительный заряд его ядра равен отрицательному заряду всех его электронов.


Атом – это мельчайшая частица вещества, наименьшая часть химического элемента, являющаяся носителем его химических свойств.

Э. Резерфорд установил, что внутри атома находятся положительно заряженное ядро, а снаружи – электрон.

*Ядро меньше атома в 10 тысяч раз.

*Масса атома практически равна массе его ядра.

Положительный ион – атом, потерявший электрон.

Отрицательный ион – атом, присоединивший один или несколько электронов.

Протон – ядро атома, который несёт один элементарный заряд.

Нейтрон – элементарная частица, не имеющая электрического заряда.

Протоны и нейтроны называют нуклонами – частицами ядра.

Валентные электроны – электроны, расположенные на внешнем слое.

Изотоп – это химический элемент с одинаковым количеством протонов и электронов, но с разным количеством нейтронов.

Опыты Н. Бора определили, что электроны в атомах располагаются слоями-оболочками (энергетическими уровнями. 1 уровень=2 электрона, 2 ур.=8, 3ур.=18, 4 ур.=32)

ЛЕКЦИЯ 1. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, ЕГОХАРАКТЕРИСТИКИ. ТЕОРЕМА ГАУССА

Рассмотрение данной темы начинаем с понятия об основных формах материи: веществе и поле.

Все вещества, как простые, так и сложные, состоят из молекул, а молекулы – из атомов.

Молекула – мельчайшая частица вещества, которая сохраняет его химические свойства.

Атом – мельчайшая частица химического элемента, которая сохраняет егосвойства. Атом состоит из положительно заряженного ядра, в состав которого входят протоны и нейтроны (нуклоны), и отрицательно заряженных электронов, расположенных на оболочках вокруг ядра на различном расстоянии от него. Если говорят, что атом электрически нейтрален, это значит, что число электронов на оболочках равно числу протонов в ядре, т.к. нейтрон заряда не имеет.

Электрический заряд – физическая величина, определяющая интенсивность электромагнитного взаимодействия. Заряд частицы обозначается q и измеряется в Кл (Кулон) в честь французского ученого Шарля Кулона. Элементарным (неделимым) зарядом обладает электрон, его заряд равен q е = -1,610 -19 Кл. Заряд протона по модулю равен заряду электрона, т. е. q р = 1,610 -19 Кл, следовательно, бывают положительные и отрицательные электрические заряды. Причем, одноименные заряды отталкиваются, а разноименные – притягиваются.

Если тело заряжено, это значит, что в нем преобладают заряды какого-то одного знака («+» или «-»), в электрически нейтральном теле число «+» и «-» зарядов равно.

Заряд всегда связан с какой-то частицей. Существуют частицы, не имеющие электрического заряда (нейтрон), но не существует заряда без частицы.

С понятием электрического заряда неразрывно связано понятие электрического поля. Существует несколько видов полей:

    электростатическое поле – это электрическое поле неподвижных заряженных частиц;

    электрическое поле – это материя, которая окружает заряженные частицы, неразрывно с ними связана и оказывает силовое воздействие на электрически заряженное тело, внесенное в пространство, заполненное этим видом материи;

    магнитное поле – это материя, которая окружает любое движущееся заряженное тело;

    электромагнитное поле характеризуется двумя взаимосвязанными сторонами – составляющими: магнитным полем и электрическим, которые выявляются по силовому воздействию на заряженные частицы или тела.

Как определить, существует ли электрическое поле в данной точке пространства или нет? Мы не можем пощупать поле, увидеть его или понюхать. Для определения существования поля необходимо внести в любую точку пространства пробный (точечный) электрический заряд q 0 .

Заряд называется точечным , если его линейные размеры весьма малы по сравнению с расстоянием до тех точек, в которых определяется его поле.

Пусть поле создается положительным зарядом q. Для определения величины поля этого заряда необходимо в любую точку пространства, окружающего этот заряд, внести пробный заряд q 0 . Тогда со стороны электрического поля заряда +q на заряд q 0 будет действовать некоторая сила.

Эту силу можно определить, используя закон Кулона : величина силы, с которой на каждый из двух точечных тел действует их общее электрическое поле, пропорциональна произведению зарядов этих тел, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся эти тела:

F = q 1 q 2 /4  0 r 2 ,

где 1/4 0 = k = 910 9 Нм 2 /Кл 2 ;

q 1 , q 2 – заряды частиц;

r – расстояние между частицами;

 0 – абсолютная диэлектрическая проницаемость вакуума (электрическаяпостоянная, равная:  0 = 8,8510 -12 Ф/м);

 - абсолютная диэлектрическая проницаемость среды, показывающая во сколько раз в среде электрическое поле меньше, чем в вакууме.

Алгебраическая сумма электрических зарядов в замкнутой системе остается постоянной.

Многие физические явления, наблюдаемые в природе и окружающей нас жизни, не могут быть объяснены только на основе законов механики, молекулярно-кинетической теории и термодинамики. В этих явлениях проявляются силы, действующие между телами на расстоянии, причем эти силы не зависят от масс взаимодействующих тел и, следовательно, не являются гравитационными. Эти силы называют электромагнитными силами .

Определения

Элементарные частицы могут иметь эл. заряд, тогда они называются заряженными;

Элементарные частицы - взаимодействуют друг с другом с силами, которые зависят от расстояния между частицами, но превышают во много раз силы взаимного тяготения (это взаимодействие называется электромагнитным).

Электрический заряд - физическая величина, определяет интенсивность электромагнитных взаимодействий.

Существует 2 знака эл.зарядов:

  • положительный
  • отрицательный

Частицы с одноименными зарядами отталкиваются , с разноименными - притягиваются . Протон имеет положительный заряд, электрон - отрицательный , нейтрон - электрически нейтрален.

Элементарный заряд - минимальный заряд, разделить который невозможно.

Чем объяснить наличие электромагнитных сил в природе? - в состав всех тел входят заряженные частицы.

В обычном состоянии тела электрически нейтральны (т.к. атом нейтрален), и электромагнитные силы не проявляются.

Тело заряжено , если имеет избыток зарядов какого-либо знака:

  • отрицательно заряжено - если избыток электронов;
  • положительно заряжено - если недостаток электронов.

Электризация тел - это один из способов получения заряженных тел, например, соприкосновением).

При этом оба тела заряжаются, причем заряды противоположны по знаку, но равны по модулю.

Закон сохранения электрического заряда

В обычных условиях микроскопические тела являются электрически нейтральными, потому что положительно и отрицательно заряженные частицы, которые образуют атомы, связаны друг с другом электрическими силами и образуют нейтральные системы. Если электрическая нейтральность тела нарушена, то такое тело называется наэлектризованное тело . Для электризации тела необходимо, чтобы на нём был создан избыток или недостаток электронов или ионов одного знака.

Способы электризации тел , которые представляют собой взаимодействие заряженных тел, могут быть следующими:

  1. Электризация тел при соприкосновении . В этом случае при тесном контакте небольшая часть электронов переходит с одного вещества, у которого связь с электроном относительно слаба, на другое вещество.
  2. Электризация тел при трении . При этом увеличивается площадь соприкосновения тел, что приводит к усилению электризации.
  3. Влияние . В основе влияния лежит явление электростатической индукции , то есть наведение электрического заряда в веществе, помещённом в постоянное электрическое поле.
  4. Электризация тел под действием света . В основе этого лежит фотоэлектрический эффект , или фотоэффект , когда под действием света из проводника могут вылетать электроны в окружающее пространство, в результате чего проводник заряжается.

Многочисленные опыты показывают, что когда имеет место электризация тела , то на телах возникают электрические заряды, равные по модулю и противоположные по знаку.

Отрицательный заряд тела обусловлен избытком электронов на теле по сравнению с протонами, а положительный заряд обусловлен недостатком электронов.

Когда происходит электризация тела, то есть когда отрицательный заряд частично отделяется от связанного с ним положительного заряда, выполняется закон сохранения электрического заряда . Закон сохранения заряда справедлив для замкнутой системы, в которую не входят извне и из которой не выходят наружу заряженные частицы.

Закон сохранения электрического заряда формулируется следующим образом :

В замкнутой системе алгебраическая сумма зарядов всех частиц остаётся неизменной:

q 1 + q 2 + q 3 + ... + q n = const

где
q 1 , q 2 и т.д. - заряды частиц.

Взаимодействие электрически заряженных тел

Взаимодействие тел , имеющих заряды одинакового или разного знака, можно продемонстрировать на следующих опытах. Наэлектризуем эбонитовую палочку трением о мех и прикоснёмся ею к металлической гильзе, подвешенной на шёлковой нити.

На гильзе и эбонитовой палочке распределяются заряды одного знака (отрицательные заряды). Приближая заряженную отрицательно эбонитовую палочку к заряженной гильзе, можно увидеть, что гильза будет отталкиваться от палочки (рис. 1.1).

Если теперь поднести к заряженной гильзе стеклянную палочку, потёртую о шёлк (положительно заряженную), то гильза будет к ней притягиваться (рис. 1.2).

Закон сохранения электрического заряда на практике


Возьмём два одинаковых электрометра и один из них зарядим (рис. 2.1). Его заряд соответствует 6 делениям шкалы.

Если соединить эти электрометры стеклянной палочкой, то никаких изменений не произойдёт. Это подтверждает тот факт, что стекло является диэлектриком. Если же для соединения электрометров использовать металлический стержень А (рис. 2.2), держа его за не проводящую электричество ручку В, то можно заметить, что первоначальный заряд разделится на две равные части: половина заряда перейдёт с первого шара на второй. Теперь заряд каждого электрометра соответствует 3 делениям шкалы. Таким образом, первоначальный заряд не изменился, он только разделился на две части.

Если заряд передать от заряженного тела к незаряженному телу такого же размера, то заряд разделится пополам между двумя этими телами. Но если второе, незаряженное тело, будет больше, чем первое, то на второе перейдёт больше половины заряда. Чем больше тело, которому передают заряд, тем большая часть заряда на него перейдёт.

Но общая сумма заряда при этом не изменится. Таким образом, можно утверждать, что заряд сохраняется. Т.е. выполняется закон сохранения электрического заряда.

Электрические заряды не существуют сами по себе, а являются внутренними свойствами элементарных частиц – электронов, протонов и др.

Опытным путем в 1914 г. американский физик Р. Милликен показал что электрический заряд дискретен . Заряд любого тела составляет целое кратное от элементарного электрического заряда e = 1.6 × 10 -19 Кл .

В реакции образования электронно-позитронной пары действует закон сохранения заряда .

q электрона + q позитрона = 0.

Позитрон - элементарная частица, имеющая массу, приблизительно равную массе электрона; заряд позитрона положительный и равен заряду электрона.

На основании закона сохранения электрического заряда объясняется электризация макроскопических тел.

Как известно, все тела состоят из атомов, в состав которых входят электроны и протоны . Количество электронов и протонов в составе незаряженного тела одинаковое. Поэтому такое тело не проявляет электрического действия на другие тела. Если же два тела находятся в тесном контакте (при натирании, сжатии, ударе и т.п.), то электроны, связанные с атомами значительно слабее, чем протоны, переходят с одного тела на другое.

Тело, на которое перешли электроны, будет иметь их избыток. Согласно закону сохранения электрический заряд этого тела будет равняться алгебраической сумме положительных зарядов всех протонов и зарядов всех электронов. Этот его заряд будет отрицательным и по значению равным сумме зарядов избыточных электронов.

У тела с излишком электронов отрицательный заряд.

Тело, утратившее электроны, будет иметь положительный заряд, модуль которого бу­дет равен сумме зарядов электронов, поте­рянных телом.

У тела, имеющего положитель­ный заряд, электронов мень­ше, чем протонов.

Электрический заряд не изме­няется при переходе тела в другую систему отсчета.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

«Физика - 10 класс»

Вначале рассмотрим наиболее простой случай, когда электрически заряженные тела находятся в покое.

Раздел электродинамики, посвящённый изучению условий равновесия электрически заряженных тел, называют электростатикой .

Что такое электрический заряд?
Какие существуют заряды?

Со словами электричество, электрический заряд, электрический ток вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» Само понятие заряд - это основное, первичное понятие, которое не сводится на современном уровне развития наших знаний к каким-либо более простым, элементарным понятиям.

Попытаемся сначала выяснить, что понимают под утверждением: «Данное тело или частица имеет электрический заряд».

Все тела построены из мельчайших частиц, которые неделимы на более простые и поэтому называются элементарными .

Элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения. С увеличением расстояния между частицами сила тяготения убывает обратно пропорционально квадрату этого расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения.

Так в атоме водорода, изображённом схематически на рисунке 14.1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.

Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными .

Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

Взаимодействие заряженных частиц называется электромагнитным .

Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

Электрический заряд элементарной частицы - это не особый механизм в частице, который можно было бы снять с неё, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определённых силовых взаимодействий между ними.

Мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Эти законы непросты, и изложить их в нескольких словах невозможно. Поэтому нельзя дать достаточно удовлетворительное краткое определение понятию электрический заряд .


Два знака электрических зарядов.


Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам, означает, что в природе есть частицы с электрическими зарядами противоположных знаков; в случае зарядов одинаковых знаков частицы отталкиваются, а в случае разных притягиваются.

Заряд элементарных частиц - протонов , входящих в состав всех атомных ядер, называют положительным, а заряд электронов - отрицательным. Между положительными и отрицательными зарядами внутренних различий нет. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.


Элементарный заряд.


Кроме электронов и протонов, есть ещё несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно малое время, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в 11 классе.

К частицам, не имеющим электрического заряда, относится нейтрон . Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра. Если элементарная частица имеет заряд, то его значение строго определено.

Заряженные тела Электромагнитные силы в природе играют огромную роль благодаря тому, что в состав всех тел входят электрически заряженные частицы. Составные части атомов - ядра и электроны - обладают электрическим зарядом.

Непосредственно действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны.

Атом любого вещества нейтрален, так как число электронов в нём равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда. Так, отрицательный заряд тела обусловлен избытком числа электронов по сравнению с числом протонов, а положительный - недостатком электронов.

Для того чтобы получить электрически заряженное макроскопическое тело, т. е. наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного или перенести на нейтральное тело отрицательный заряд.

Это можно сделать с помощью трения. Если провести расчёской по сухим волосам, то небольшая часть самых подвижных заряженных частиц - электронов перейдёт с волос на расчёску и зарядит её отрицательно, а волосы зарядятся положительно.


Равенство зарядов при электризации


С помощью опыта можно доказать, что при электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

Возьмём электрометр, на стержне которого укреплена металлическая сфера с отверстием, и две пластины на длинных рукоятках: одна из эбонита, а другая из плексигласа. При трении друг о друга пластины электризуются.

Внесём одну из пластин внутрь сферы, не касаясь её стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберётся на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнётся от стержня электрометра (рис. 14.2, а).

Если внести внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки от стержня, причём на тот же угол, что и в первом опыте.

Опустив обе пластины внутрь сферы, мы вообще не обнаружим отклонения стрелки (рис. 14.2, б). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку.

Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

В типографиях происходит электризация бумаги при печати, и листы слипаются. Чтобы это не происходило, применяют специальные устройства для стекания заряда. Однако электризация тел при тесном контакте иногда используется, например, в различных электрокопировальных установках и др.


Закон сохранения электрического заряда.


Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для изолированной системы .

В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

q 1 + q 2 + q 3 + ... + q n = const. (14.1)

где q 1 , q 2 и т. д. - заряды отдельных заряженных тел.

Закон сохранения заряда имеет глубокий смысл. Если число заряженных элементарных частиц не меняется, то выполнение закона сохранения заряда очевидно. Но элементарные частицы могут превращаться друг в друга, рождаться и исчезать, давая жизнь новым частицам.

Однако во всех случаях заряженные частицы рождаются только парами с одинаковыми по модулю и противоположными по знаку зарядами; исчезают заряженные частицы тоже только парами, превращаясь в нейтральные. И во всех этих случаях алгебраическая сумма зарядов остаётся одной и той же.

Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.

ТЕМА 1.1ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

ЛЕКЦИЯ 1. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ, ЕГО ХАРАКТЕРИСТИКИ. ТЕОРЕМА ГАУССА

Рассмотрение данной темы начинаем с понятия об основных формах материи: веществе и поле.

Все вещества, как простые, так и сложные, состоят из молекул, а молекулы – из атомов.

Молекула – мельчайшая частица вещества, которая сохраняет его химические свойства.

Атом – мельчайшая частица химического элемента, которая сохраняет егосвойства. Атом состоит из положительно заряженного ядра, в состав которого входят протоны и нейтроны (нуклоны), и отрицательно заряженных электронов, расположенных на оболочках вокруг ядра на различном расстоянии от него. Если говорят, что атом электрически нейтрален, это значит, что число электронов на оболочках равно числу протонов в ядре, т.к. нейтрон заряда не имеет.

Электрический заряд – физическая величина, определяющая интенсивность электромагнитного взаимодействия. Заряд частицы обозначается q и измеряется в Кл (Кулон) в честь французского ученого Шарля Кулона. Элементарным (неделимым) зарядом обладает электрон, его заряд равен q е = -1,6 × 10 -19 Кл. Заряд протонапо модулю равен заряду электрона, т. е. q р = 1,6 × 10 -19 Кл, следовательно, бывают положительные и отрицательные электрические заряды. Причем, одноименные заряды отталкиваются, а разноименные – притягиваются.

Если тело заряжено, это значит, что в нем преобладают заряды какого-то одного знака («+» или «-»), в электрически нейтральном теле число «+» и «-» зарядов равно.

Заряд всегда связан с какой-то частицей. Существуют частицы, не имеющие электрического заряда (нейтрон), но не существует заряда без частицы.

С понятием электрического заряда неразрывно связано понятие электрического поля. Существует несколько видов полей:

  • электростатическое поле – это электрическое поле неподвижных заряженных частиц;
  • электрическое поле – это материя, которая окружает заряженные частицы, неразрывно с ними связана и оказывает силовое воздействие на электрически заряженное тело, внесенное в пространство, заполненное этим видом материи;
  • магнитное поле – это материя, которая окружает любое движущееся заряженное тело;
  • электромагнитное поле характеризуется двумя взаимосвязанными сторонами – составляющими: магнитным полем и электрическим, которые выявляютсяпо силовому воздействию на заряженные частицы или тела.

Как определить, существует ли электрическое поле в данной точке пространства или нет? Мы не можем пощупать поле, увидеть его или понюхать. Для определения существования поля необходимо внести в любую точку пространства пробный (точечный) электрический заряд q 0 .

Заряд называется точечным , если его линейные размеры весьма малы по сравнению с расстоянием до тех точек, в которых определяется его поле.

Пусть поле создается положительным зарядом q . Для определения величины поля этого заряда необходимо в любую точку пространства, окружающего этот заряд, внести пробный заряд q 0 . Тогда со стороны электрического поля заряда+ q на заряд q 0 будет действовать некоторая сила.

Эту силу можно определить, используя з акон Кулона : величина силы, с которой на каждый из двух точечных тел действует их общее электрическое поле, пропорциональна произведению зарядов этих тел, обратно пропорциональна квадрату расстояния между ними и зависит от среды, в которой находятся эти тела:

F = q 1 × q 2 /4 p ee 0 r 2 ,

где1/4 p ee 0 = k = 9 × 10 9 Н × м 2 /Кл 2 ;

q 1 , q 2 – заряды частиц;

r – расстояние между частицами;

e 0 – абсолютная диэлектрическая проницаемость вакуума (электрическаяпостоянная, равная: e 0 = 8,85 × 10 -12 Ф/м);

e -абсолютная диэлектрическая проницаемость среды, показывающая во сколько раз в среде электрическое поле меньше, чем в вакууме.

Характеристики электрического поля:

1. силовая характеристика – напряженность (Е) – это векторнаяфизическая величина, численно равная отношению силы,действующей на заряд, помещенный в данную точку поля, к величине этого заряда: Е = F / q ;[ E ] = [ 1 Н/Кл ] =

Графически электрическое поле изображают с помощью силовых линий – это линии, касательные к которым в каждой точке пространства совпадают с направлением вектора напряженности .

Силовые линии электрического поля незамкнуты, они начинаются на положительных зарядах и заканчиваются на отрицательных:



Пусть у нас имеются:

а)два положительных заряда q 1 и q 2 ;

б)два отрицательных заряда q 3 и q 4 ;

в) положительный заряд q 5 иотрицательный заряд q 6

Необходимо найти напряженность поля, созданного этими зарядами в некоторых точках пространства (А, В, С).


Принципсуперпозиции: если поле создано несколькими электрическими зарядами, то напряженность такого поля равна векторной (геометрической) сумме напряженностей полей отдельных зарядов: Е общ = Е 1 + Е 2 + Е 3 + … + Е n

Электрическое поле называется однородным, если вектор напряженности Е одинаков по модулю и по направлению в любой точке поля, а силовые линии поля параллельны между собойи находятся на одинаковом расстоянии друг от друга.

Пусть унас имеется однородное электрическое поле, например, поле между обкладками плоского конденсатора, в котором положительный точечный заряд q перемещается под действием силы со стороны этого поля из точки А в точку В на расстояние l.

При этом электрическое поле будет совершать работу, равную:

А = Fl ,где F = Eq , т.е. А = Eql -работа поля по перемещению электрического заряда q из одной точки поля в другую.

Величина, равная отношению работы по перемещению точечного положительного заряда между двумя точками поля к величине этого заряда, называется электрическим напряжением между указанными точками: U = A / q = Eql / q = E × l [ U ] = = .

Работа электрического поля не зависит от формы траектории, следовательно, она равна изменению потенциальной энергии, взятой с обратным знаком: А = - D Е пот = - D Е р. На замкнутой траектории работа поля равна нулю.

Потенциальная энергия всегда связана с выбором нулевого (начального) уровня, однако, в данном случае выбор нулевого уровня относителен. Физический смысл имеет не сама потенциальная энергия, а ее изменение, т.к. именно за счет изменения потенциальной энергии совершается работа. И чем больше ее изменение, тем больше работа поля.

2. энергетическая характеристика потенциал j - это скалярная физическая величина, равная отношению потенциальной энергии заряда, необходимой для его перемещения из одной точки поля в другую, к величине этого заряда: j = D Е р / q .[ j ] = =

D j = j 2 - j 1 – изменение потенциала;

U = j 1 - j 2 - разность потенциалов (напряжение)

Физический смысл напряжения: U = j 1 - j 2 = А/ q - - напряжение численно равно отношению работы по перемещению заряда из начальной точки поля в конечную к величине этого заряда.

U = 220 В в сети означает, что при перемещении заряда в 1 Кл из одной точки поля в другую, поле совершает работу в 220 Дж.

Теорема Гаусса

Произведение напряженности электрического поля Е и площади S , во всех точках которой напряженность одинакова, т.е. поле однородно, и перпендикулярна к ней, составляетпоток вектора напряженности : N = ES .

Если поверхность неоднородна, то при вычислении потока вектора напряженности через нее необходимо разбить эту поверхность на малые элементы D S , в пределах которых Е = const , тогда поток через отдельные элементарные площадкибудет равен: D N = E n × D S , а поток вектора Е через всю поверхность находится суммированием элементарных потоков:

N = S D N = S E n × D S.

Теорема Гаусса: если у нас имеется замкнутая поверхность, на которой находятся заряженные тела (заряды), то поток вектора напряженности электрического поля сквозь замкнутую поверхность равен отношению суммы зарядов (Q ), расположенных внутри этой поверхности, к абсолютной диэлектрической проницаемости среды: N = Q / ee 0