Кандидаты на нобелевскую премию по физике. Названы лауреаты нобелевской премии по физике

Как и многие другие истории в физике, о гравитационных волнах начинают рассказывать с Альберта Эйнштейна. Именно он предсказал (хотя поначалу утверждать совершенно обратное!), что массивные, движущиеся с ускорением тела так возмущают ткань пространства-времени вокруг себя, что запускают гравитационные волны, то есть пространство вокруг этих объектов физически сжимается и разжимается, а со временем эти колебания разбегаются по всей Вселенной, как разбегаются круги по воде от брошенного камня.

Как поймать гравитационную волну?

За десятки лет измерений поймать, то есть достоверно зафиксировать гравитационные волны пытались многие физики, но впервые это получилось только 14 сентября 2015 года. Это было измерение на пределе доступной человечеству точности, возможно, самый тонкий эксперимент современной науки. Гравитационная волна, запущенная слиянием двух черных дыр в миллиарде с лишним световых лет от нас привела к тому, что четырехкилометровые плечи гравитационных телескопов коллаборации LIGO (Laser Interferometer Gravitational-Wave Observatory, или лазерно-интерферометрическая гравитационно-волновая обсерватория) сжимались и разжимались на какие-то исчезающие доли от характерных размеров атомов, что было зафиксировано с помощью сверхточной оптики. Событие абсолютно циклопических, вселенских масштабов вызвало на Земле крошечный, еле заметный отзвук.

«То, что используется для детектирования гравитационных волн сейчас, - это самые последние достижения в сфере лазерной физики и вакуумных технологий и новейшие средства для обработки и расшифровки информации. Действительно, без такого уровня технологий, которые есть сейчас, помыслить два-три десятка лет назад о том, что мы можем детектировать гравитационные волны, было нельзя», - отметил в беседе с корреспондентом портала «Чердак» президент Российской академии наук Александр Сергеев. Его научная группа из Института прикладной физики РАН - одна из участников коллаборации LIGO (вторая российская группа возглавляется Валерием Митрофановым из МГУ).

Неудивительно, что после этого физики из LIGO взяли несколько месяцев на проверку результатов и только 11 февраля 2016 года рассказали миру о своем открытии - почти вековая охота за гравитационными волнами наконец закончилась удачей.

После этого LIGO детектировал еще несколько гравитационных событий. Некоторые из них были отсеяны за недостаточной достоверностью (то есть плечи интерферометров снова начинали колебаться, но такое же поведение в этих случаях можно было объяснить и фоновыми процессами), но в копилку физиков все-таки упало еще целых три события. Гравитационные волны от слияния других черных дыр приходили на Землю еще 25 декабря 2015 года, 4 января 2017 года и 14 августа 2017 года.

О последнем из них совсем недавно, меньше недели назад. В этот раз гравитационный сигнал был зафиксирован уже с помощью трех установок: вместе с американскими LIGO начал работать гравитационный телескоп европейской коллаборации VIRGO. Гравитационная волна по очереди прошла через каждую из установок, что позволило значительно увеличить точность определения места ее рождения.

Почему это важно?

Здесь есть два главных аспекта. Первый - фундаментальный. Предсказания гравитационных волн - это важная часть общей теории относительности (ОТО), а потому их экспериментальное обнаружение еще раз подтверждает ОТО.

«Регистрация [гравитационных волн] - это мощнейшее подтверждение фундамента, на котором стоит наука. Люди уверены в общей теории относительности и уверенно с ней работают… Это фундаментальнейшая вещь. Конечно, деваться было некуда, надо было давать премию», - сказал корреспонденту «Чердака» ведущий научный сотрудник Института ядерных исследований РАН и Астрокосмического центра ФИАН Борис Штерн.

Кроме этого, успех с гравитационными волнами косвенно подтверждает многие астрофизические модели. Ведь физики сначала рассчитали, как должны выглядеть гипотетические сигналы от различных гравитационных событий, например того же слияния черных дыр, и только потом получили точно такие же сигналы в наблюдении.

Второй аспект с важностью гравитационных волн чуть менее фундаментальный - он скорей про расширение возможностей человечества. Четыре события за два года - это уже тенденция. По обещаниям физиков, точность гравитационных телескопов дальше будет только повышаться, событий будет фиксироваться только больше, и так мы разглядим наш мир с еще одного, необычного ракурса. К оптическим, рентгеновским, радио- и многим другим телескопам теперь добавляются гравитационные.

С их помощью можно «разглядеть» многие буквально невидимые вещи. Например, слияние тех же самых черных дыр скорей всего не оставляет никаких следов в любых диапазонах электромагнитных волн, и, соответственно, может быть зафиксировано только с помощью гравитационных телескопов.

Что будет дальше?

Тут есть разные прогнозы. Одни рассуждают о новой физике, другие ждут обнаружения реликтовых гравитационных волн, гуляющих по Вселенной с первых моментов ее создания.

«Это только первые гравитационные волны от астрофизических, хотя и очень необычных объектов - черных дыр. А вот теперь все астрофизики будут ждать открытия из тех эпох, когда рождалась наша Вселенная. Кроме гравитационных волн никакие сигналы оттуда не доходят. И то, что мы научились их ловить, - мы открыли канал, которые позволит заглянуть в то время, когда рождалась Вселенная, а может быть, еще и до этого», - рассказал корреспонденту «Чердака» заведующий лабораторией космического мониторинга ГАИШ МГУ Владимир Липунов.

Но самый реалистичный сценарий - это одновременное детектирование гравитационных событий с помощью других телескопов.

Сейчас LIGO и VIRGO уже скидывают координаты событий другим телескопам (например, автоматическим телескопам системы МАСТЕР, которой руководит Липунов), но те пока ни разу не видели никаких «отпечатков» волн в других диапазонах. Поэтому все эти гравитационные события пока остаются в некой степени анонимными - мы знаем, на каком примерно расстоянии от Земли встретились две черные дыры и какова была их масса, но где точно это произошло или что, например, было на месте черных дыр до этого, сказать не можем.

Поэтому физики очень ждут регистрации гравитационных волн от какого-нибудь другого события, например столкновения двух нейтронных звезд, которое должно быть видно и в других диапазонах. По слухам, в конце августа физики даже уже зарегистрировали такой сигнал от двух нейтронных звезд в галактике NGC 4993 в 130 миллионах световых лет от Земли, но пока официального подтверждения этому нет. Но и того, что есть, уже вполне достаточно для одного из самых быстрых вручений Нобелевской премии - после открытия ученые прождали ее меньше двух лет.

И это, кажется, только начало большой научной истории. «Эти три телескопа (имеются в виду два телескопа LIGO и один VIRGO - прим. „Чердака“ ) сделали еще одно величайшее открытие - вот тут мы уже поучаствовали. Но об этом я сейчас не могу говорить. 16 октября будет пресс-конференция у нас в МГУ и прямая трансляция из Америки», - сказал Липунов (выделение наше - прим. «Чердака» ).

Так что - задержите дыхание, пристегните ремни. Кажется, на вручении Нобелевской премии история с охотой на гравитационные волны еще не заканчивается.

Премии удостоились американские ученые Райнер Вайсс, Кип Торн и Барри Бариш

Американский ученый Райнер Вайсс

Москва. 3 октября. сайт - Нобелевскую премию по физике в 2017 году получили американские ученые: Райнер Вайсс, профессор физики Массачусетского технологического института, а также Кип Торн и Барри Бариш, профессора физики Калифорнийского технологического института, с формулировкой "за решающий вклад в детектор LIGO и за наблюдение гравитационных волн".

Вайсс (85 лет), Торн (77 лет) и Бариш (81 год) считались самыми главными претендентами на Нобелевскую премию по физике с момента объявления об обнаружении гравитационных волн в 2016 году коллаборациями LIGO и VIRGO.

The Nobel Prize (@NobelPrize) 3 октября 2017 г.

LIGO представляет собой две гравитационные обсерватории, расположенные в 3 тыс. км друг от друга - один неподалеку от Ливингстона (штат Луизиана), другой - возле Хэнфорда (Вашингтон).

Лазерные интерферометры собраны по Г-схеме, состоят из двух перпендикулярно расположенных оптических плечей. Их длина составляет четыре километра. Как поясняет N+1, луч лазера расщепляют на две составляющие, которые проходят по трубам, отражаются от их концов и объединяются вновь. В случае если длина плеча изменилась, изменяется характер интерференции между лучами, что фиксируется детекторами. Большое расстояние между обсерваториями позволяет увидеть разность во времени прибытия гравитационных волн - из предположения о том, что последние распространяются со скоростью света, разница времени прибытия достигает 10 миллисекунд.

Премия по физике - 2016

В прошлом году Нобелевскую премию по физике получили Дэвид Таулес, Дункан Холдейн и Майкл Костерлитц "за теоретические открытия в и топологических фазах материи". Топология - область математики, изучающая свойства геометрических объектов, которые сохраняются при непрерывных преобразованиях. Теоретическое обоснование в топологических переходах сможет в будущем помочь в создании квантового компьютера и имеет отношение к квантовым физическим явлениям.

Премия по медицине - 2017

Ранее в понедельник, 2 октября, назвали победителей Нобелевской премии по . Лауреатами стали ученые из США Джеффри Холл, Майкл Розбаш и Майкл Янг. Они удостоились награды за изучение молекулярных механизмов, регулирующих циркадные ритмы организма. Это суточные колебания различных параметров организма, характерные практически для всех живых существ.

Исследователи независимо друг от друга открыли на плодовой мушке Drosophila melanogaster ген и белок period, концентрация которого колеблется с периодичностью 24 часа и определяет работу "биологических часов" животного.

Лауреаты Нобелевской премии в 2017 году 9 млн шведских крон (около $1,12 млн). Нобелевский фонд впервые с 2001 года решил увеличить размеры премий лауреатам на 12,5%. Ранее победители получали 8 млн шведских крон (около $931 тыс.).

С учетом инфляции сумма в 9 млн крон немного превышает первую премию, выплаченную в 1901 году (109%). Общая сумма инвестированного капитала Нобелевского фонда на конец декабря 2016 года составляла 1,73 млрд крон.

Официальное вручение премий и медалей состоится в декабре 2017 года.

Александр Сергеев объяснил суть уникального открытия

Гравитационные волны притянули Нобелевскую премию своим первооткрывателям спустя всего полтора года после объявления об их поимке. Мало того, все физики, кого мы не спрашивали накануне , как один предсказывали победу именно группы исследователей из международной коллаборации LIGO. Физики Райнер Вайсс, Барри Бариш и Кип Торн экспериментально доказали существование гравитационных волн. В этом списке, на мой взгляд, должна была быть еще одна фамилия нашего с вами соотечественника Владислава Пустовойта из МГТУ им. Баумана, ведь именно по предложенной им и Михаилом Герценштейном из НИИ ядерной физики МГУ методике и решили ловить гравитационные волны американцы. Но, увы, за идеи, Нобелевские премии почти никогда не выдаются, главное - реализация этих идей на практике. О деталях открытия «МК» поведал один из участников проекта LIGO с российской стороны - директор нижегородского Института прикладной физики, президент РАН Александр СЕРГЕЕВ.

Гравитационные волны - это изменения гравитационного поля, распространяющиеся подобно волнам. Их существование предсказал в 1916 году Альберт Эйнштейн, а впервые обнаружили 14 сентября 2015 года на установках LIGO - лазерно-интерферометрической гравитационно-волновой обсерватории члены международной группы, объединившей тысячи ученых из 15 стран. Сигнал исходил от слияния двух черных дыр массами 36 и 29 солнечных масс на расстоянии около 1,3 млрд световых лет от Земли. Об открытии ученые сообщили 11 февраля 2016 года.

Это достижение сразу поставили в один ряд с появлением телескопа и объявили о вступлении человечества в эру гравитационно-волновой астрономии. Детектор, при помощи которого были пойманы волны, назвали инструментом, который позволит «слушать» Вселенную напрямую, невзирая на газо-пылевые облака.

Мы не говорим, что Нобелевская премия по физике в 2017 году объявлена «за открытие» гравитационных волн, все-таки само открытие их сделал, что называется, на кончике пера Альберт Эйнштейн. Мы говорим сейчас об экспериментальном подтверждении существования гравитационных волн, - уточняет руководитель нижегородской группы участников эксперимента LIGO, президент РАН Александр Сергеев. - Если говорить о важности этой работы, - это безусловно триумф человечества. Долгое время теоретики исследовали возможности возникновения гравитационных волн: либо в результате процессов слияния звезд, либо в результате вспышек сверхновых... Безусловно оценивались возможности их детектирования здесь, на земле.

Одним из самых важных обстоятельств на пути к успешному эксперименту стала демонстрация первого лазера в 1960-м году. Ученым стало понятно, что лазерное излучение обладает важными свойствами для того, чтобы использовать его для детектирования гравитационных волн. В 1962 году появилась статья двух советских ученых Михаила Герценштейна и Владислава Пустовойта, которые и предложили эту схему. Их теоретическая статья была предтечей того, что американцы сделали в дальнейшем. Поэтому можно с полным правом считать, что идейный приоритет, связанный с поимкой гравитационных волн, принадлежит именно нашим ученым. Ныне здравствующий академик Владислав Иванович Пустовойт, безусловно, заслуживает чтобы быть в числе нобелевских лауреатов. Ну а если говорить о тех, кто Нобелевку получил, я их тоже хорошо знаю. Это Барри Бариш - очень интересный человек, который пришел в проект из ускорительной физики (он был одним из руководителей создания техасского коллайдера). Когда программа с коллайдером была в 90-е годы закрыта, американцы очень прозорливо бросили команду строителей суперколлайдера на создание установки по детектированию гравитационных волн. Два друг ученых - Райнер Вайсс и Кип Торн давно работают именно в области изучения гравитационных волн, являются ее пионерами. Когда Российская академия наук в лице нижегородского Института прикладной физики вступала в коллаборацию LIGO в 1997 году, именно эти два исследователя оказали нам большую дружескую поддержку. Надо отметить, что кроме нашего института в проекте LIGO участвовала и группа сотрудников из МГУ. Поэтому среди соавторов работы, безусловно, есть и часть российских ученых. Хотя, к большому сожалению, эта часть не была определяющей.

Создатель удобрений и химического оружия

Одним из самых спорных обладателей Нобелевской премии стал Фриц Габер (Fritz Haber). Премия по химии была присуждена ему в 1918 году за изобретение метода синтеза аммиака - открытие, имеющее решающее значение для производства удобрений. Однако он также известен и как "отец химического оружия" из-за работ в области применения отравляющего газа хлора, использовавшегося в ходе Первой мировой войны.

Смертельное открытие

Другой немецкий ученый, Отто Ган (Otto Han) - на фото в центре - был удостоен "нобелевки" в 1945 году за открытие расщепления атомного ядра. Несмотря на то, что он никогда не работал над военным применением этого открытия, оно напрямую привело к разработке ядерного оружия. Ган получил премию спустя несколько месяцев после того, как были сброшены ядерные бомбы на Хиросиму и Нагасаки.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Прорыв, оказавшийся под запретом

Швейцарский химик Пауль Мюллер получил премию по медицине в 1948 году за открытие того, что ДДТ может эффективно убивать насекомых, распространяющих такие болезни, как малярия. Использование пестицида спасло в свое время миллионы жизней. Однако позже экологи стали утверждать, что ДДТ представляет угрозу для здоровья человека и вредит природе. Сегодня его использование запрещено по всему миру.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Неудобная награда

Из-за своей явной и косвенной политической окраски премия мира, пожалуй, самая противоречивая из всех нобелевских наград. В 1935 году немецкий пацифист Карл фон Осецкий (Carl von Ossietzky) получил ее за разоблачение секретного перевооружения Германии. Сам Осецкий находился в тюрьме по обвинению в измене, и возмущенный Гитлер обвинил комитет во вмешательстве во внутренние дела Германии.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Премия (возможного) мира

Решение норвежского комитета присудить премию мира Госсекретарю США Генри Киссинджеру и лидеру Северного Вьетнама Ле Дык Тхо в 1973 году столкнулось с жесткой критикой. Нобелевская премия должна была стать символом признания заслуг в достижении прекращения огня в ходе вьетнамской войны, однако Ле Дык Тхо отказался от ее получения. Война во Вьетнаме продолжалась еще два года.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Либертарианец и диктатор

Защитник свободного рынка Милтон Фридман - один из самых спорных получателей Нобелевской премии мира по экономике. Решение комитета в 1976 году вызвало международные протесты из-за связей Фридмана с чилийским диктатором Аугусто Пиночетом. Годом ранее Фридман действительно посетил Чили, и критики утверждают, что его идеи вдохновили режим, где применялись пытки и были убиты тысячи людей.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Напрасные надежды

Премия мира, которую в 1994 году разделили палестинский лидер Ясир Арафат, премьер-министр Израиля Ицхак Рабин и израильский министр иностранных дел Шимон Перес, должна была послужить дополнительным стимулом для мирного урегулирования конфликта на Ближнем Востоке. Вместо этого дальнейшие переговоры провалились, а Рабин был убит израильским националистом год спустя.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Жуткие мемуары

Правозащитница Ригоберта Менчу, отстаивающая интересы народа майя, получила премию мира в 1992 году "за борьбу за социальную справедливость". Впоследствии это решение вызвало много споров, так как в ее мемуарах были якобы обнаружены фальсификации. Описанные ею зверства о геноциде коренных народов Гватемалы сделали ее знаменитой. Однако многие убеждены, что она в любом случае заслуживала награды.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Преждевременная награда

Когда премию мира в 2009 году присудили Бараку Обаме, удивлены были многие, включая и его самого. Находящийся к тому моменту менее года на посту президента, он получил премию за "огромные усилия по укреплению международной дипломатии". Критики и некоторые сторонники Обамы посчитали, что награда была преждевременной, и он получил ее еще до того, как у него появился шанс сделать реальные шаги.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

Посмертная награда

В 2011 году Нобелевский комитет назвал лауреатами премии по медицине Жюля Хоффмана, Брюса Бётлера и Ральфа Стейнмана за их открытия в области изучения иммунной системы. Проблема была в том, что за несколько дней до этого Стейнман умер от рака. Согласно правилам, премия не вручается посмертно. Но комитет все же присудил ее Стейнману, обосновав тем, что о его смерти тогда было еще не известно.

От Фридмана до Обамы: Самые неоднозначные нобелевские лауреаты

"Величайшее упущение"

Нобелевская премия вызывает споры не только из-за того, кому она была присуждена, но и потому, что кто-то ее так и не получил. В 2006 году член Нобелевского комитета Гейр Лундестад заявил, что "несомненно, величайшим упущением за всю нашу 106-летнюю историю стало то, что Махатма Ганди так никогда и не получил Нобелевскую премию мира".