Все элементы главной подгруппы 7. Галогены (элементы VII группы главной подгруппы)

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

К VII группе периодической системы элементов относятся марганец, технеций, рений, борий, а так же по старой номенклатуре фтор, хлор, бром, йод, астат - являющиеся галогенами.

Элементы группы 7 имеют по 7 валентных электронов. Все они являются серебристо-белыми тугоплавкими металлами. В ряду Mn -- Tc -- Re химическая активность понижается. Электропроводность рения приблизительно в 4 раза меньше, чем вольфрама. На воздухе компактный металлический марганец покрывается тончайшей пленкой окисла, которая предохраняет его от дальнейшего окисления даже при нагревании. Напротив, в мелко раздробленном состоянии он окисляется довольно легко.

На внешнем энергетическом уровне у галогенов 7 электронов, являются сильными окислителями. При взаимодействии с металлами возникает ионная связь, и образуются соли. Галогены (кроме фтора) при взаимодействии с более электроотрицательными элементами могут проявлять и восстановительные свойства вплоть до высшей степени окисления +7.

Технеций и борий, являются радиоактивными с достаточно коротким периодом полураспада, ввиду чего в природе они не встречаются. Марганец принадлежит к распространенным элементам, составляя 0,03 % от общего числа атомов земной коры.

Что касается галогенов, они имеют высокую реакционную способность, поэтому встречаются в природе обычно в виде соединений. Их распространённость в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду.

галоген элемент астат марганец

1. Седьм ая группа периодической системы

1.1 Г лавная под группа седьмой группы. Галогены

В главную подгруппу VII группы входят элементы фтор, хлор, бром, йод, астат.

Галогены (от греч. ?льт -- соль и гЭнпт -- рождение, происхождение; иногда употребляется устаревшее название галоиды) -- химические элементы VII группы периодической таблицы химических элементов Д. И. Менделеева

Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены -- энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F ? , Cl ? , Br ? , I ? , At ? уменьшается.

Все галогены -- неметаллы. На внешнем энергетическом уровне 7 электронов, являются сильными окислителями. При взаимодействии с металлами возникает ионная связь, и образуются соли. Галогены (кроме фтора) при взаимодействии с более электроотрицательными элементами могут проявлять и восстановительные свойства вплоть до высшей степени окисления +7.

Как уже было сказано выше, галогены имеют высокую реакционную способность, поэтому встречаются в природе обычно в виде соединений.

Их распространённость в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду. Количество астата в земной коре измеряется граммами, а унунсептий в природе отсутствует. Фтор, хлор, бром и иод производятся в промышленных масштабах, причём объёмы производства хлора значительно выше, чем трёх других стабильных галогенов.

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который оченьмалорастворим и находится в осадочных породах (как флюорит CaF 2).

Основным способом получения простых веществ является окисление галогенидов. Высокие положительные стандартные электродные потенциалы E o (F 2 /F ?) = +2,87 В и E o (Cl 2 /Cl ?) = +1,36 В показывают, что окислить ионы F ? и Cl ? можно только сильными окислителями. В промышленности применяется только электролитическое окисление. При получении фтора нельзя использовать водный раствор, поскольку вода окисляется при значительно более низком потенциале (+1,32 В) и образующийся фтор стал бы быстро реагировать с водой. Впервые фтор был получен в 1886 г. французским химикомАнри Муассаном при электролизе раствора гидрофторида калия KHF 2 в безводной плавиковой кислоте.

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах. При этом протекают следующие реакции:

полуреакция на аноде:

полуреакция на катоде:

Окисление воды на аноде подавляется использованием такого материала электрода, который имеет более высокое перенапряжение по отношению к O 2 , чем к Cl 2 (таким материалом является, в частности, RuO 2).

В современных электролизёрах катодное и анодное пространства разделены полимерной ионообменной мембраной. Мембрана позволяет катионам Na + переходить из анодного пространства в катодное. Переход катионов поддерживает электронейтральность в обеих частях электролизёра, так как в течение электролиза отрицательные ионы удаляются от анода (превращение 2Cl ? в Cl 2) и накапливаются у катода (образование OH ?). Перемещение OH ? в противоположную сторону могло бы тоже поддерживать электронейтральность, но ион OH ? реагировал бы с Cl 2 и сводил на нет весь результат.

Бром получают химическим окислением бромид-иона, находящегося в морской воде. Подобный процесс используется и для получения иода из природных рассолов, богатых I ? . В качестве окислителя в обоих случаях используют хлор, обладающий более сильными окислительными свойствами, а образующиеся Br 2 и I 2 удаляются из раствора потоком воздуха.

Таблица 1, Некоторые свойства галогенов.

1.2 Фтор

Фтор (лат. Fluorum), F, химический элемент VII группы периодической системы Менделеева, относится к галогенам, атомный номер 9, атомная масса 18,998403; при нормальных условиях (0 °С; 0,1 Мн/м 2 , или 1 кгс/см 2) - газ бледно-желтого цвета с резким запахом.

Природный Фтор состоит из одного стабильного изотопа 19 F. Искусственно получен ряд изотопов, в частности: 16 F с периодом полураспада T Ѕ < 1 сек, 17 F (T Ѕ = 70 сек) , 18 F (T Ѕ = 111 мин) , 20 F (T Ѕ = 11,4 сек) , 21 F (T Ѕ = 5 сек).

Историческая справка. Первое соединение Фтора - флюорит (плавиковый шпат) CaF 2 - описано в конце 15 века под названием "флюор" (от лат. fluo - теку, по свойству CaF 2 делать жидкотекучими вязкие шлаки металлургических производств). В 1771 году К. Шееле получил плавиковую кислоту. Свободный Фтор выделил А. Муассан в 1886 электролизом жидкого безводного фтористого водорода, содержащего примесь кислого фторида калия KHF 2 .

Химия Фтора начала развиваться с 1930-х годов, особенно быстро - в годы 2-й мировой войны 1939-45 годов и после нее в связи с потребностями атомной промышленности и ракетной техники. Название "Фтор" (от греч. phthoros - разрушение, гибель), предложенное А. Ампером в 1810 году, употребляется только в русском языке; во многих странах принято название "флюор".

Распространение Фтора в природе. Среднее содержание Фтора в земной коре (кларк) 6,25·10 -2 % по массе; в кислых изверженных породах (гранитах) оно составляет 8·10 -2 %, в основных - 3,7·10 -2 %, в ультраосновных - 1·10 -2 % . Фтор присутствует в вулканических газах и термальных водах. Важнейшие соединения Фтора - флюорит, криолит и топаз. Всего известно более 80 фторсодержащих минералов. Соединения Фтора находятся также в апатитах, фосфоритах и других. Фтор - важный биогенный элемент. В истории Земли источником поступления Фтора в биосферу были продукты извержения вулканов (газы и др.).

Физические свойства Фтора. Газообразный Фтор имеет плотность 1,693 г/л (0°С и 0,1 Мн/м 2 , или 1 кгс/см 2), жидкий - 1,5127 г/см 3 (при температуре кипения); t пл -219,61 °С; t кип -188,13 °С. Молекула Фтора состоит из двух атомов (F 2); при 1000 °С 50% молекул диссоциирует, энергия диссоциации около 155 кДж/моль (37 ккал/моль). Фтор плохо растворим в жидком фтористом водороде; растворимость 2,5·10 -3 г в 100 г HF при -70 °С и 0,4·10 -3 г при -20 °С; в жидком виде неограниченно растворим в жидком кислороде и озоне.

Химические свойства Фтора. Конфигурация внешних электронов атома Фтора 2s 2 2p 5 . В соединениях проявляет степень окисления -1. Ковалентный радиус атома 0,72Е, ионный радиус 1,ЗЗЕ. Сродство к электрону 3,62 эв, энергия ионизации (F > F+) 17,418эв. Высокими значениями сродства к электрону и энергии ионизации объясняется сильная электроотрицательность атома Фтора, наибольшая среди всех других элементов. Высокая реакционная способность Фтора обусловливает экзотермичность фторирования, которая, в свою очередь, определяется аномально малой величиной энергии диссоциации молекулы Фтора и большими величинами энергии связей атома Фтора с других атомами. Прямое фторирование имеет цепной механизм и легко может перейти в горение и взрыв. Фтор реагирует со всеми элементами, кроме гелия, неона и аргона. С кислородом взаимодействует в тлеющем разряде, образуя при низких температуpax фториды кислорода O 2 F 2 , O 3 F 2 и другие. Реакции Фтора с других галогенами экзотермичны, в результате образуются межгалогенные соединения. Хлор взаимодействует с Фтором при нагревании до 200-250 "С, давая монофтористый хлор ClF и трехфтористый хлор ClF 3 . Известен также ClF 5 , получаемый фторированием ClF 3 при высокой температуре и давлении 25 Мн/м2 (250 кгс/см2). Бром и иод воспламеняются в атмосфере Фтора при обычной температуре, при этом могут быть получены BrF 3 , BrF 5 , IF 3 , IF 2 . Фтор непосредственно реагирует с криптоном, ксеноном и радоном, образуя соответствующие фториды (например, XeF 4 , XeF 6 , KrF 2). Известны также оксифториды ксенона.

Взаимодействие Фтора с серой сопровождается выделением тепла и приводит к образованию многочисленных фторидов серы. Селен и теллур образуют высшие фториды SeF 6 и TeF 6 . Фтор с водородом реагируют с воспламенением; при этом образуется фтористый водород. Это радикальная реакция с разветвлением цепей:

HF* + Н 2 = HF + Н 2 *; Н 2 * + F 2 = HF + Н + F

(где HF* и Н 2 * - молекулы в колебательно-возбужденном состоянии); реакция используется в химических лазерах. Фтор с азотом реагирует лишь в электрическом разряде. Древесный уголь при взаимодействии с Фтором воспламеняется при обычной температуре; графит реагирует с ним при сильном нагревании, при этом возможно образование твердого фтористого графита (CF) Х или газообразных перфторуглеродов CF 4 , C 2 F 6 и других. С бором, кремнием, фосфором, мышьяком Фтор взаимодействует на холоду, образуя соответствующие фториды.

Фтор энергично соединяется с большинством металлов; щелочные и щелочноземельные металлы воспламеняются в атмосфере Фтора на холоду, Bi, Sn, Ti, Mo, W - при незначительном нагревании. Hg, Pb, U, V реагируют с Фтором при комнатной температуре, Pt - при температуре темнокрасного каления. При взаимодействии металлов с Фтор образуются, как правило, высшие фториды, например UF 6 , MoF 6 , HgF 2 . Некоторые металлы (Fe, Cu, Al, Ni, Mg, Zn) реагируют с Фтором с образованием защитной пленки фторидов, препятствующей дальнейшей реакции.

При взаимодействии Фтора с оксидами металлов на холоду образуются фториды металлов и кислород; возможно также образование оксифторидов металлов (например, MoO 2 F 2). Оксиды неметаллов либо присоединяют Фтор, например SO 2 + F 2 = SO 2 F 2 , либо кислород в них замещается на Фтор, например SiO 2 + 2F 2 = SiF 4 + О 2 . Стекло очень медленно реагирует с Фтором; в присутствии воды реакция идет быстро. Вода взаимодействует с Фтором: 2Н 2 О + 2F 2 = 4HF + О 2 ; при этом образуется также OF 2 и пероксид водорода Н 2 О 2 . Оксиды азота NO и NO 2 легко присоединяют Фтор с образованием соответственно фтористого нитрозила FNO и фтористого нитрила FNO 2 . Оксид углерода (II) присоединяет Фтор при нагревании с образованием фтористого карбонила:

СО + F 2 = COF 2 .

Гидрооксиды металлов реагируют с Фтором, образуя фторид металла и кислород, например

2Ва(ОН) 2 + 2F 2 = 2BaF 2 + 2Н 2 О + О 2 .

Водные растворы NaOH и KOH реагируют с Фтором при 0°С с образованием OF 2 .

Галогениды металлов или неметаллов взаимодействуют с Фтором на холоду, причем Фтор замещает все галогены.

Легко фторируются сульфиды, нитриды и карбиды. Гидриды металлов образуют с Фтором на холоду фторид металла и HF; аммиак (в парах) - N 2 и HF. Фтор замещает водород в кислотах или металлы в их солях, например НNО 3 (или NaNO 3) + F 2 = FNO 3 + HF (или NaF); в более жестких условиях Фтор вытесняет кислород из этих соединений, образуя сульфурилфторид, например

Na 2 SO 4 + 2F 2 = 2NaF +SO 2 F 2 + O 2 .

Карбонаты щелочных и щелочноземельных металлов реагируют с Фтором при обычной температуре; при этом получаются соответствующий фторид, СО 2 и О 2 .

Фтор энергично реагирует с органических веществами.

Получение Фтора. Источником для производства Фтора служит фтористый водород, получающийся в основном либо при действии серной кислоты H 2 SO 4 · на флюорит CaF 2 , либо при переработке апатитов и фосфоритов. Производство Фтора осуществляется электролизом расплава кислого фторида калия KF-(1,8-2,0)HF, который образуется при насыщении расплава KF-HF фтористым водородом до содержания 40-41% HF. Материалом для электролизера обычно служит сталь; электроды - угольный анод и стальной катод. Электролиз ведется при 95-100 °С и напряжении 9-11 в; выход Фтора по току достигает 90-95%. Получающийся Фтор содержит до 5% HF, который удаляется вымораживанием с последующим поглощением фторидом натрия. Фтор хранят в газообразном состоянии (под давлением) и в жидком виде (при охлаждении жидким азотом) в аппаратах из никеля и сплавов на его основе (монелъ-металл), из меди, алюминия и его сплавов, латуни, нержавеющей стали.

Применение Фтора. Газообразный Фтор служит для фторирования UF 4 в UF 6 , применяемого для изотопов разделения урана, а также для получения трехфтористого хлора ClF 3 (фторирующий агент), шестифтористой серы SF 6 (газообразный изолятор в электротехнической промышленности), фторидов металлов (например, W и V). Жидкий Фтор - окислитель ракетных топлив.

Широкое применение получили многочисленные соединения Фтора - фтористый водород, фторид алюминия, кремнефториды, фторсульфоновая кислота (растворитель, катализатор, реагент для получения органических соединений, содержащих группу - SO 2 F), BF 3 (катализатор), фторорганические соединения и другие.

Техника безопасности. Фтор токсичен, предельно допустимая концентрация его в воздухе примерно 2·10 -4 мг/л, а предельно допустимая концентрация при экспозиции не более 1 ч составляет 1,5·10 -3 мг/л.

Фтор в организме. Фтор постоянно входит в состав животных и растительных тканей; микроэлемент. В виде неорганических соединений содержится главным образом в костях животных и человека -100-300 мг/кг; особенно много Фтора в зубах. Кости морских животных богаче Фтором по сравнению с костями наземных. Поступает в организм животных и человека преимущественно с питьевой водой, оптимальное содержание Фтора в которой 1-1,5 мг/л. При недостатке Фтора у человека развивается кариес зубов, при повышенном поступлении - флюороз. Высокие концентрации ионов Фтора опасны ввиду их способности к ингибированию ряда ферментативных реакций, а также к связыванию важных в биологическом отношении элементов. (Р, Са, Mg и других), нарушающему их баланс в организме. Органические производные Фтора обнаружены только в некоторых растениях (например, в южноафриканском Dichapetalum cymosum). Основные из них - производные фторуксусной кислоты, токсичные как для других растений, так и для животных. Установлена связь обмена Фтора с образованием костной ткани скелета и особенно зубов.

Отравления Фтором возможны у работающих в химические промышленности, при синтезе фторсодержащих соединений и производстве фосфорных удобрений. Фтор раздражает дыхательные пути, вызывает ожоги кожи. При остром отравлении возникают раздражение слизистых оболочек гортани и бронхов, глаз, слюнотечение, носовые кровотечения; в тяжелых случаях - отек легких, поражение центральной нервной системы и других; при хроническом - конъюнктивит, бронхит, пневмония, пневмосклероз, флюороз. Характерно поражение кожи типа экземы. Первая помощь: промывание глаз водой, при ожогах кожи - орошение 70%-ным спиртом; при ингаляционном отравлении - вдыхание кислорода. Профилактика: соблюдение правил техники безопасности, ношение специальной одежды, регулярные медицинские осмотры, включение в пищевой рацион кальция, витаминов.

1.3 Хлор

Хлор (лат. Chlorum), Cl, химический элемент VII группы периодической системы Менделеева, атомный номер 17, атомная масса 35,453; относится к семейству галогенов. При нормальных условиях (0°С, 0,1 Мн/м 2 , или 1 кгс/см 2) желто-зеленый газ с резким раздражающим запахом. Природный Хлор состоит из двух стабильных изотопов: 35 Сl (75,77%) и 37 Cl (24,23%). Искусственно получены радиоактивные изотопы с массовыми числами 31-47, в частности: 32, 33, 34, 36, 38, 39, 40 с периодами полураспада (T Ѕ) соответственно 0,31; 2,5; 1,56 сек; 3,1·105 лет; 37,3, 55,5 и 1,4 мин. 36Cl и 38Cl используются как изотопные индикаторы.

Историческая справка. Хлор получен впервые в 1774 году К. Шееле взаимодействием соляной кислоты с пиролюзитом MnО 2 . Однако только в 1810 году Г. Дэви установил, что хлор - элемент и назвал его chlorine (от греч. chloros - желто-зеленый). В 1813 году Ж. Л. Гей-Люссак предложил для этого элемента название Хлор.

Распространение Хлора в природе. Хлор встречается в природе только в виде соединений. Среднее содержание Хлора в земной коре (кларк) 1,7·10 -2 % по массе, в кислых изверженных породах- гранитах и других 2,4·10 -2 , в основных и ультраосновных 5·10 -3 . Основную роль в истории Хлора в земной коре играет водная миграция. В виде иона Cl - он содержится в Мировом океане (1,93%), подземных рассолах и соляных озерах. Число собственных минералов (преимущественно природных хлоридов) 97, главный из них галит NaCl (Каменная соль). Известны также крупные месторождения хлоридов калия и магния и смешанных хлоридов: сильвин КCl, сильвинит (Na,K)Cl, карналит KCl·MgCl 2 · 6H 2 O, каинит KCl·MgSO 4 ·3H 2 O, бишофит MgCl 2 ·6H 2 O. В истории Земли большое значение имело поступление содержащегося в вулканических газах НCl в верхние части земной коры.

Физические свойства Хлора. Хлор имеет t кип -34,05°С, t пл -101°С. Плотность газообразного Хлора при нормальных условиях 3,214 г/л; насыщенного пара при 0°С 12,21 г/л; жидкого Хлора при температуре кипения 1,557 г/см 3 ; твердого Хлора при - 102°С 1,9 г/см 3 . Давление насыщенных паров Хлора при 0°С 0,369; при 25°С 0,772; при 100°С 3,814 Мн/м 2 или соответственно 3,69; 7,72; 38,14 кгс/см 2 . Теплота плавления 90,3 кдж/кг (21,5 кал/г); теплота испарения 288 кдж/кг (68,8 кал/г); теплоемкость газа при постоянном давлении 0,48 кдж/(кг·К) . Критические константы Хлора: температура 144°С, давление 7,72 Мн/м 2 (77,2 кгс/см 2), плотность 573 г/л, удельный объем 1,745·10 -3 л/г. Растворимость (в г/л) Хлора при парциальном давлении 0,1 Мн/м 2 , или 1 кгс/см 2 , в воде 14,8 (0°С), 5,8 (30°С), 2,8 (70°С); в растворе 300 г/л NaCl 1,42 (30°С), 0,64 (70°С). Ниже 9,6°С в водных растворах образуются гидраты Хлора переменного состава Cl 2 ·nН 2 О (где n = 6-8); это желтые кристаллы кубической сингонии, разлагающиеся при повышении температуры на Хлор и воду. Хлор хорошо растворяется в TiCl 4 , SiCl 4 , SnCl 4 и некоторых органических растворителях (особенно в гексане С 6 H 14 и четыреххлористом углероде CCl 4). Молекула Хлора двухатомна (Cl 2). Степень термической диссоциации Cl 2 + 243кдж = 2Cl при 1000 К равна 2,07·10 -4 %, при 2500 К 0,909%.

Химические свойства Хлора. Внешняя электронная конфигурация атома Cl 3s 2 Зр 5 . В соответствии с этим Хлор в соединениях проявляет степени окисления -1,+1, +3, +4, +5, +6 и +7. Ковалентный радиус атома 0,99Е, ионный радиус Cl - 1.82Е, сродство атома Хлора к электрону 3,65 эв, энергия ионизации 12,97 эв.

Химически Хлор очень активен, непосредственно соединяется почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании) и с неметаллами (кроме углерода, азота, кислорода, инертных газов), образуя соответствующие хлориды, вступает в реакцию со многими соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. Хлор вытесняет бром и иод из их соединений с водородом и металлами; из соединений Хлора с этими элементами он вытесняется фтором. Щелочные металлы в присутствии следов влаги взаимодействуют с Хлором с воспламенением, большинство металлов реагирует с сухим Хлором только при нагревании. Сталь, а также некоторые металлы стойки в атмосфере сухого Хлора в условиях невысоких температур, поэтому их используют для изготовления аппаратуры и хранилищ для сухого Хлора. Фосфор воспламеняется в атмосфере Хлора, образуя РCl 3 , а при дальнейшем хлорировании - РСl 5 ; сера с Хлором при нагревании дает S 2 Cl 2 , SCl 2 и другие S n Cl m . Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с Хлором. Смесь Хлора с водородом горит бесцветным или желто-зеленым пламенем с образованием хлористого водорода (это цепная реакция).

Максимальная температура водородно-хлорного пламени 2200°С. Смеси Хлора с водородом, содержащие от 5,8 до 88,5% Н 2 , взрывоопасны.

С кислородом Хлор образует оксиды: Cl 2 О, СlO 2 , Cl 2 О 6 , Сl 2 О 7 , Cl 2 О 8 , а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Оксиды Хлора малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов.

Хлор в воде гидролизуется, образуя хлорноватистую и соляную кислоты: Cl 2 + Н 2 О = НClО + НCl. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NaOH + Cl 2 = NaClO + NaCl + Н 2 О, а при нагревании - хлораты. Хлорированием сухого гидрооксида кальция получают хлорную известь.

При взаимодействии аммиака с Хлором образуется треххлористый азот. При хлорировании органических соединений Хлор либо замещает водород, либо присоединяется по кратным связям, образуя различные хлорсодержащие органических соединения.

Хлор образует с других галогенами межгалогенные соединения. Фториды ClF, ClF 3 , ClF 3 очень реакционноспособны; например, в атмосфере ClF 3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом и фтором - оксифториды Хлора: ClO 3 F, ClO 2 F 3 , ClOF, ClOF 3 и перхлорат фтора FClO 4 .

Получение Хлора. Хлор начали производить в промышленности в 1785 году взаимодействием соляной кислоты с оксидом марганца (II) или пиролюзитом. В 1867 году английский химик Г. Дикон разработал способ получения Хлора окислением НСl кислородом воздуха в присутствии катализатора. С конца 19 - начала 20 века Хлор получают электролизом водных растворов хлоридов щелочных металлов. По этим методам производится 90-95% Хлора в мире. Небольшие количества Хлора получаются попутно при производстве магния, кальция, натрия и лития электролизом расплавленных хлоридов. Применяются два основные метода электролиза водных растворов NaCl: 1) в электролизерах с твердым катодом и пористой фильтрующей диафрагмой; 2) в электролизерах с ртутным катодом. По обоим методам на графитовом или окисном титано-рутениевом аноде выделяется газообразный Хлор. По первому методу на катоде выделяется водород и образуется раствор NaOH и NaCl, из которого последующей переработкой выделяют товарную каустическую соду. По второму методу на катоде образуется амальгама натрия, при ее разложении чистой водой в отдельном аппарате получаются раствор NaOH, водород и чистая ртуть, которая вновь идет в производство. Оба метода дают на 1 т Хлора 1,125 т NaOH.

Электролиз с диафрагмой требует меньших капиталовложений для организации производства Хлора, дает более дешевый NaOH. Метод с ртутным катодом позволяет получать очень чистый NaOH, но потери ртути загрязняют окружающую среду.

Применение Хлора. Одной из важных отраслей химические промышленности является хлорная промышленность. Основные количества Хлора перерабатываются на месте его производства в хлорсодержащие соединения. Хранят и перевозят Хлор в жидком виде в баллонах, бочках, железнодорожных цистернах или в специально оборудованных судах. Для индустриальных стран характерно следующее примерное потребление Хлор: на производство хлорсодержащих органических соединений - 60-75%; неорганических соединений, содержащих Хлор, -10-20%; на отбелку целлюлозы и тканей- 5-15%; на санитарные нужды и хлорирование воды - 2-6% от общей выработки.

Хлор применяется также для хлорирования некоторых руд с целью извлечения титана, ниобия, циркония и других

Хлор в организме. Хлор - один из биогенных элементов, постоянный компонент тканей растений и животных. Содержание Хлора в растениях (много Хлора в галофитах) - от тысячных долей процента до целых процентов, у животных - десятые и сотые доли процента. Суточная потребность взрослого человека в Хлоре (2-4 г) покрывается за счет пищевых продуктов. С пищей Хлор поступает обычно в избытке в виде хлорида натрия и хлорида калия. Особенно богаты Хлором хлеб, мясные и молочные продукты. В организме животных Хлор - основное осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и некоторых тканей. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Регуляция кислотно-щелочного равновесия в тканях осуществляется наряду с других процессами путем изменения в распределении Хлора между кровью и других тканями. Хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. Хлор положительно влияет на поглощение корнями кислорода. Хлор необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами. В состав большинства питательных сред для искусственного культивирования растений Хлор не входит. Возможно, для развития растений достаточны весьма малые концентрации Хлора.

Отравления Хлором возможны в химической, целлюлозно-бумажной, текстильной, фармацевтической промышленности и других. Хлор раздражает слизистые оболочки глаз и дыхательных путей. К первичным воспалительным изменениям обычно присоединяется вторичная инфекция. Острое отравление развивается почти немедленно. При вдыхании средних и низких концентраций Хлор отмечаются стеснение и боль в груди, сухой кашель, учащенное дыхание, резь в глазах, слезотечение, повышение содержания лейкоцитов в крови, температуры тела и т. п. Возможны бронхопневмония, токсический отек легких, депрессивные состояния, судороги. В легких случаях выздоровление наступает через 3-7 суток. Как отдаленные последствия наблюдаются катары верхних дыхательных путей, рецидивирующий бронхит, пневмосклероз и других; возможна активизация туберкулеза легких. При длительном вдыхании небольших концентраций Хлора наблюдаются аналогичные, но медленно развивающиеся формы заболевания. Профилактика отравлений: герметизация производств, оборудования, эффективная вентиляция, при необходимости использование противогаза. Производство Хлора, хлорной извести и других хлорсодержащих соединений относится к производствам с вредными условиями труда.

1.4 Бром

Бром (лат. Bromum), Вг, химический элемент VII группы периодической системы Менделеева, относится к галогенам; атомный номер 35, атомная масса 79,904; красно-бурая жидкость с сильным неприятным запахом. Бром открыт в 1826 году французским химиком А. Ж. Баларом при изучении рассолов средиземноморских соляных промыслов; назван от греч. bromos - зловоние. Природный Бром состоит из 2 стабильных изотопов 79 Вr (50,54%) и 81 Вr (49,46%). Из искусственно полученных радиоактивных изотопов Бром наиболее интересен 80 Вr, на примере которого И. В. Курчатовым открыто явление изомерии атомных ядер.

Распространение Брома в природе. Содержание Бром в земной коре (1,6·10 -4 % по массе) оценивается в 10 15 -10 16 т. В главной своей массе Бром находится в рассеянном состоянии в магматических породах, а также в широко распространенных галогенидах. Бром - постоянный спутник хлора. Бромистые соли (NaBr, KBr, MgBr 2) встречаются в отложениях хлористых солей (в поваренной соли до 0,03% Вr, в калийных солях - сильвине и карналлите - до 0,3% Вr), а также в морской воде (0,065% Вr), рапе соляных озер (до 0,2% Вr) и подземных рассолах, обычно связанных с соляными и нефтяными месторождениями (до 0,1% Вr). Благодаря хорошей растворимости в воде бромистые соли накопляются в остаточных рассолах морских и озерных водоемов. Бром мигрирует в виде легко растворимых соединений, очень редко образуя твердые минеральные формы, представленные бромиритом AgBr, эмболитом Ag (Cl, Вг) и иодэмболитом Ag (Cl, Вr, I). Образование минералов происходит в зонах окисления сульфидных серебросодержащих месторождений, формирующихся в засушливых пустынных областях.

Физические свойства Брома. При -7,2°С жидкий Бром застывает, превращаясь в красно-коричневые игольчатые кристаллы со слабым металлическим блеском. Пары Брома желто-бурого цвета, t кип 58,78°С. Плотность жидкого Бром (при 20°С) 3,1 г/см 3 . В воде Бром растворим ограниченно, но лучше других галогенов (3,58 г Брома в 100 г Н 2 О при 20°С). Ниже 5,84°С из воды осаждаются гранатово-красные кристаллы Br 2 ·8Н 2 О. Особенно хорошо растворим Бром во многих органических растворителях, чем пользуются для извлечения его из водных растворов. Бром в твердом, жидком и газообразном состоянии состоит из 2-атомных молекул. Заметная диссоциация на атомы начинается при температуре около 800°С; диссоциация наблюдается и при действии света.

Химические свойства Брома. Конфигурация внешних электронов атома Бром 4s 2 4p 5 . Валентность Брома в соединениях переменна, степень окисления равна -1 (в бромидах, например КВr), +1 (в гипобромитах, NaBrO), +3 (в бромитах, NaBrO 2), +5 (в броматах, КВrОз) и +7 (в перброматах, NaBrO 4). Химически Бром весьма активен, занимая по реакционной способности место между хлором и иодом. Взаимодействие Брома с серой, селеном, теллуром, фосфором, мышьяком и сурьмой сопровождается сильным разогреванием, иногда даже появлением пламени. Так же энергично Бром реагирует с некоторыми металлами, например, калием и алюминием. Однако многие металлы реагируют с безводным Бром с трудом из-за образования на их поверхности защитной пленки бромида, нерастворимого в Броме. Из металлов наиболее устойчивы к действию Брома, даже при повышенных температурах и в присутствии влаги, серебро, свинец, платина и тантал (золото, в отличие от платины, энергично реагирует с Бромом). С кислородом, азотом и углеродом Бром непосредственно не соединяется даже при повышенных температурах. Соединения Брома с этими элементами получают косвенным путем. Таковы крайне непрочные оксиды Вr 2 О, ВrО 2 и Вr 3 О 8 (последний получают, например, действием озона на Бром при 80°С). С галогенами Бром взаимодействует непосредственно, образуя BrF 3 , BrF 5 , BrCl, IBr и другие.

Бром - сильный окислитель. Так, он окисляет сульфиты и тиосульфаты в водных растворах до сульфатов, нитриты до нитратов, аммиак до свободного азота (3Br 2 + 8NH 3 = N 2 + NH 4 Br). Бром вытесняет иод из его соединений, но сам вытесняется хлором и фтором. Свободный Бром выделяется из водных растворов бромидов также под действием сильных окислителей (KMnO 4 , K 2 Cr 2 O 7) в кислой среде. При растворении в воде Бром частично реагирует с ней (Br 2 + H 2 O = HBr + HBrO) с образованием бромистоводородной кислоты НВг и неустойчивой бромноватистой кислоты НВгО. Раствор Брома в воде называется бромной водой. При растворении Брома в растворах щелочей на холоду происходит образование бромида и гипобромита (2NaOH + Br 2 =NaBr + NaBrO + H 2 O), а при повышенных температурах (около 100°С) - бромида и бромата (6NaOH + 3Br 2 = 5NaBr + NaBrO 3 + 3H 2 O). Из реакций Брома с органическими соединениями наиболее характерны присоединение по двойной связи С=С, а также замещение водорода (обычно при действии катализаторов или света).

Получение Брома. Исходным сырьем для получения Брома служат морская вода, озерные и подземные рассолы и щелока калийного производства, содержащие Бром в виде бромид-иона Вr - (от 65 г/м 3 в морской воде до 3-4 кг/м 3 и выше в щелоках калийного производства). Бром выделяют при помощи хлора (2Br - + Cl 2 = Br 2 + 2Cl -) и отгоняют из раствора водяным паром или воздухом. Отгонку паром ведут в колоннах, изготовленных из гранита, керамики или иного стойкого к Брому материала. Сверху в колонну подают подогретый рассол, а снизу - хлор и водяной пар. Пары Брома, выходящие из колонны, конденсируют в керамиковых холодильниках. Далее Бром отделяют от воды и очищают от примеси хлора дистилляцией. Отгонка воздухом позволяет использовать для получения Брома рассолы с его низким содержанием, выделять Бром из которых паровым способом в результате большого расхода пара невыгодно. Из получаемой бромовоздушной смеси Бром улавливают химическими поглотителями. Для этого применяют растворы бромистого железа (2FeBr 2 + Br 2 = 2FeBr 3), которое, в свою очередь, получают восстановлением FeBr 3 железными стружками, а также растворы гидроокисей или карбонатов натрия или газообразный сернистый ангидрид, реагирующий с Бромом в присутствии паров воды с образованием бромистоводородной и серной кислот (Br 2 + SO 2 + 2H 2 O = 2HBr + H 2 SO 4). Из полученных полупродуктов Бром выделяют действием хлора (из FeBr 3 и HBr) или кислоты (5NaBr + NaBrO 3 + 3 H 2 SO 4 = 3Br 2 + 3Na 2 SO 4 + 3H 2 O). В случае необходимости полупродукты перерабатывают на бромистые соединения, не выделяя элементарного Брома.

Вдыхание паров Брома при содержании их в воздухе 1 мг/м 3 и более вызывает кашель, насморк, носовое кровотечение, головокружение, головную боль; при более высоких концентрациях - удушье, бронхит, иногда смерть. Предельно допустимые концентрации паров Брома в воздухе 2 мг/м 3 . Жидкий Бром действует на кожу, вызывая плохо заживающие ожоги. Работы с Бромом следует проводить в вытяжных шкафах. При отравлении парами Брома рекомендуется вдыхать аммиак, используя для этой цели сильно разбавленный раствор его в воде или в этиловом спирте. Боль в горле, вызванную вдыханием паров Брома, устраняют приемом внутрь горячего молока. Бром, попавший на кожу, смывают большим количеством воды или сдувают сильной струей воздуха. Обожженные места смазывают ланолином.

Применение Брома. Бром применяют довольно широко. Он - исходный продукт для получения ряда бромистых солей и органических производных. Большие количества Брома расходуют для получения бромистого этила и дибромэтана - составных частей этиловой жидкости, добавляемой к бензинам для повышения их детонационной стойкости. Соединения Брома применяют в фотографии, при производстве ряда красителей, бромистый метил и некоторые другие соединения Брома - как инсектициды. Некоторые органических соединения Брома служат эффективными огнетушащими средствами. Бром и бромную воду используют при химических анализах для определения многих веществ. В медицине используют бромиды натрия, калия, аммония, а также органические соединения Брома, которые применяют при неврозах, истерии, повышенной раздражительности, бессоннице, гипертонической болезни, эпилепсии и хорее.

Бром в организме. Бром - постоянная составная часть тканей животных и растений. Наземные растения содержат в среднем 7·10 -4 % Брома на сырое вещество, животные ~1·10 -4 %. Бром найден в различных секретах (слезах, слюне, поте, молоке, желчи). В крови здорового человека содержание Брома колеблется от 0,11 до 2,00 мг% . С помощью радиоактивного Брома (82 Вr) установлено избирательное поглощение его щитовидной железой, мозговым слоем почек и гипофизом. Введенные в организм животных и человека бромиды усиливают концентрацию процессов торможения в коре головного мозга, содействуют нормализации состояния нервной системы, пострадавшей от перенапряжения тормозного процесса. Одновременно, задерживаясь в щитовидной железе, Бром вступает в конкурентные отношения с иодом, что влияет на деятельность железы, а в связи с этим - и на состояние обмена веществ.

1.5 Йод

Иод (лат. Iodum), I, химический элемент VII группы периодической системы Менделеева, относится к галогенам (в литературе встречается также устаревшие название Йод и символ J); атомный номер 53, атомная масса 126,9045; кристаллы черно-серого цвета с металлическим блеском. Природный Иод состоит из одного стабильного изотопа с массовым числом 127. Иод открыл в 1811 году французский химик Б. Куртуа. Нагревая маточный рассол золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение фиолетового пара (отсюда название Иод - от греч. iodes, ioeides - похожий цветом на фиалку, фиолетовый), который конденсировался в виде темных блестящих пластинчатых кристаллов. В 1813-1814 годах французский химик Ж. Л. Гей-Люссак и английский химик Г. Дэви доказали элементарную природу Иода.

Распространение Иода в природе. Среднее содержание Иода в земной коре 4·10 -5 % по массе. В мантии и магмах и в образовавшихся из них породах (гранитах, базальтах и других) соединения Иода рассеяны; глубинные минералы Иода неизвестны. История Иода в земной коре тесно связана с живым веществом и биогенной миграцией. В биосфере наблюдаются процессы его концентрации, особенно морскими организмами (водорослями, губками и другими). Известны восемь гипергенных минералов Иода, образующихся в биосфере, однако они очень редки. Основным резервуаром Иода для биосферы служит Мировой океан (в 1 л в среднем содержится 5·10 -5 г Иода). Из океана соединения Иода, растворенные в каплях морской воды, попадают в атмосферу и переносятся ветрами на континенты. (Местности, удаленные от океана или отгороженные от морских ветров горами, обеднены Иодом) Иод легко адсорбируется органическими веществами почв и морских илов. При уплотнении этих илов и образовании осадочных горных пород происходит десорбция, часть соединений Иода переходит в подземные воды. Так образуются используемые для добычи Иода иодобромные воды, особенно характерные для районов нефтяных месторождений (местами 1 л этих вод содержит свыше 100 мг Иода).

Физические свойства Иода. Плотность Иода 4,94 г/см 3 , t пл 113,5°C, t кип 184,35 °С. Молекула жидкого и газообразного Иода состоит из двух атомов (I 2). Заметная диссоциация I 2 = 2I наблюдается выше 700 °C, а также при действии света. Уже при обычной температуре Иод испаряется, образуя резко пахнущий фиолетовый пар. При слабом нагревании Иод возгоняется, оседая в виде блестящих тонких пластинок; этот процесс служит для очистки Иода в лабораториях и в промышленности. Иод плохо растворим в воде (0,33 г/л при 25 °C), хорошо - в сероуглероде и органических растворителях (бензоле, спирте и других), а также в водных растворах иодидов.

Химические свойства Иода. Конфигурация внешних электронов атома Иода 5s 2 5p 5 . B соответствии с этим Иод проявляет в соединениях переменную валентность (степень окисления): -1 (в HI, KI), +1 (в HIO, KIO), +3 (в ICl 3), +5 (в HIO 3 , KIO 3) и +7 (в HIO 4 , KIO 4). Химически Иод довольно активен, хотя и в меньшей степени, чем хлор и бром. С металлами Иод при легком нагревании энергично взаимодействует, образуя иодиды (Hg + I 2 = HgI 2). С водородом Иод реагирует только при нагревании и не полностью, образуя иодистый водород. С углеродом, азотом, кислородом Иод непосредственно не соединяется. Элементарный Иод - окислитель, менее сильный, чем хлор и бром. Сероводород H 2 S, тиосульфат натрия Na 2 S 2 O 3 и другие восстановители восстанавливают его до I - (I 2 + H 2 S = S + 2HI). Хлор и другие сильные окислители в водных растворах переводят его в IO 3 - (5Cl 2 + I 2 + 6H 2 O = 2HIO 3 H + 10НСl). При растворении в воде Иод частично реагирует с ней (I 2 + H 2 O = HI + HIO); в горячих водных растворах щелочей образуются иодид и иодат (3I 2 + 6NaOH = 5NaI + NaIO 3 + 3H 2 O). Адсорбируясь на крахмале, Иод окрашивает его в темно-синий цвет; это используется в иодометрии и качественном анализе для обнаружения Иода.

Пары Иода ядовиты и раздражают слизистые оболочки. На кожу Иод оказывает прижигающее и обеззараживающее действие. Пятна от Иода смывают растворами соды или тиосульфата натрия.

Получение Иода. Сырьем для промышленного получения Иода служат нефтяные буровые воды; морские водоросли, а также маточные растворы чилийской (натриевой) селитры, содержащие до 0,4% Иода в виде иодата натрия. Для извлечения Иода из нефтяных вод (содержащих обычно 20-40 мг/л Иод в виде иодидов) на них сначала действуют хлором (2 NaI + Cl 2 = 2NaCl + I 2) или азотистой кислотой (2NaI + 2NaNO 2 + 2H 2 SO 4 = 2Na 2 SO 4 + 2NO + I 2 + 2H 2 O). Выделившийся Иод либо адсорбируют активным углем, либо выдувают воздухом. На Иод, адсорбированный углем, действуют едкой щелочью или сульфитом натрия (I 2 + Na 2 SO 3 + H 2 O = Na 2 SO 4 + 2HI). Из продуктов реакции свободный Иод выделяют действием хлора или серной кислоты и окислителя, например, дихромата калия (K 2 Cr 2 O 7 + 7H 2 SO 4 + 6NaI = K 2 SO 4 + 3Na 2 SO 4 + Cr 2 (SO 4)S + 3I 2). При выдувании воздухом Иод поглощают смесью оксида серы (IV) с водяным паром (2H 2 O + SO 2 + I 2 = H 2 SO 4 + 2HI) и затем вытесняют Иод хлором (2HI + Cl 2 = 2HCl + I 2). Сырой кристаллический Иод очищают возгонкой.

Применение Иода. Иод и его соединения применяют главным образом в медицине и в аналитической химии, а также в органическом синтезе и фотографии.

Иод в организме. Иод - необходимый для животных и человека микроэлемент. В почвах и растениях таежно-лесной нечерноземной, сухостепной, пустынной и горных биогеохимических зон Иод содержится в недостаточном количестве или не сбалансирован с некоторыми других микроэлементами (Co, Mn, Cu); с этим связано распространение в этих зонах эндемического зоба. Среднее содержание Иода в почвах около 3·10 -4 %, в растениях около 2·10 -5 %. В поверхностных питьевых водах Иода мало (от 10 -7 до 10 -9 %). В приморских областях количество Иода в 1 м 3 воздуха может достигать 50 мкг, в континентальных и горных - составляет 1 или даже 0,2 мкг.

Поглощение Иода растениями зависит от содержания в почвах его соединений и от вида растений. Некоторые организмы (так называемые концентраторы Иода), например, морские водоросли - фукус, ламинария, филлофора, накапливают до 1% Иода, некоторые губки - до 8,5% (в скелетном веществе спонгине). Водоросли, концентрирующие Иод, используются для его промышленного получения. В животный организм Иод поступает с пищей, водой, воздухом. Основной источник Иода - растительные продукты и корма. Всасывание Иода происходит в передних отделах тонкого кишечника. В организме человека накапливается от 20 до 50 мг Иода, в том числе в мышцах около 10-25 мг, в щитовидной железе в норме 6-15 мг. С помощью радиоактивного Иода (131 I и 125 I) показано, что в щитовидной железе Иод накапливается в митохондриях эпителиальных клеток и входит в состав образующихся в них дииод- и моноиодтирозинов, которые конденсируются в гормон тетраиодтиронин (тироксин). Выделяется Иод из организма преимущественно через почки (до 70- 80%), молочные, слюнные и потовые железы, частично с желчью.

В различных биогеохимических провинциях содержание Иода в суточном рационе колеблется (для человека от 20 до 240 мкг, для овцы от 20 до 400 мкг). Потребность животного в Иоде зависит от его физиологического состояния, времени года, температуры, адаптации организма к содержанию Иода в среде. Суточная потребность в Иоде человека и животных - около 3 мкг на 1 кг массы (возрастает при беременности, усиленном росте, охлаждении). Введение в организм Иода повышает основной обмен, усиливает окислительные процессы, тонизирует мышцы, стимулирует половую функцию.

В связи с большим или меньшим недостатком Иода в пище и воде применяют иодирование поваренной соли, содержащей обычно 10-25 г йодистого калия на 1 т соли. Применение удобрений, содержащих Иод, может удвоить и утроить его содержание в сельскохозяйственных культурах.

Иод в медицине. Препараты, содержащие Иод, обладают антибактериальными и противогрибковыми свойствами, они оказывают также противовоспалительное и отвлекающее действие; их применяют наружно для обеззараживания ран, подготовки операционного поля. При приеме внутрь препараты Иода оказывают влияние на обмен веществ, усиливают функцию щитовидной железы. Малые дозы Иода (микроиод) тормозят функцию щитовидной железы, действуя на образование тиреотропного гормона передних долей гипофиза. Поскольку Иод влияет на белковый и жировой (липидный) обмен, он нашел применение при лечении атеросклероза, так как снижает содержание холестерина в крови; повышает также фибринолитическую активность крови. Для диагностических целей используют рентгеноконтрастные вещества, содержащие Иод.

При длительном применении препаратов Иода и при повышенной чувствительности к ним возможно появление иодизма - насморк, крапивница, отек Квинке, слюно- и слезотечение, угревидная сыпь (иододерма) и пр. Препараты Иода нельзя принимать при туберкулезе легких, беременности, при заболеваниях почек, хронической пиодермии, геморрагических диатезах, крапивнице.

Иод радиоактивный. Искусственно радиоактивные изотопы Иода - 125 I, 131 I, 132 I и другие широко используются в биологии и особенно в медицине для определения функционального состояния щитовидной железы и лечения ряда ее заболеваний. Применение радиоактивного Иода в диагностике связано со способностью Иода избирательно накапливаться в щитовидной железе; использование в лечебных целях основано на способности в-излучения радиоизотопов Иода разрушать секреторные клетки железы. При загрязнениях окружающей среды продуктами ядерного деления радиоактивные изотопы Иода быстро включаются в биологический круговорот, попадая, в конечном счете, в молоко и, следовательно, в организм человека. Особенно опасно их проникновение в организм детей, щитовидная железа которых в 10 раз меньше, чем у взрослых людей, и к тому же обладает большей радиочувствительностью. С целью уменьшения отложения радиоактивных изотопов Иода в щитовидной железе рекомендуется применять препараты стабильного Иода (по 100-200 мг на прием). Радиоактивный Иод быстро и полностью всасывается в желудочно-кишечном тракте и избирательно откладывается в щитовидной железе. Его поглощение зависит от функционального состояния железы. Относительно высокие концентрации радиоизотопов Иода обнаруживаются также в слюнных и молочной железах и слизистой желудочно-кишечного тракта. Не поглощенный щитовидной железой радиоактивный Иод почти полностью и сравнительно быстро выделяется с мочой.

Подобные документы

    Изучение понятия и основных свойств галогенов - химических элементов (фтор, хлор, бром, йод и астат), составляющих главную подгруппу VII группы периодической системы Д.И. Менделеева. Положительное и отрицательное влияние галогенов на организм человека.

    презентация , добавлен 20.10.2011

    История открытия и место в периодической системе химических элементов Д.И. Менделеева галогенов: фтора, хлора, брома, йода и астата. Химические и физические свойства элементов, их применение. Распространённость элементов и получение простых веществ.

    презентация , добавлен 13.03.2014

    Химические элементы, относящиеся к галогенам: фтор, хлор, бром, йод и астат. Химическая характеристика, порядковые номера элементов, их физические свойства, энергия ионизации и электроотрицательность. Степени окисления галогенов, энергия диссоциации.

    презентация , добавлен 16.12.2013

    Понятие и практическое значение галогенов, их физические и химические свойства, отличительные признаки. Характеристика и способы получения галогенов: йода, брома, хлора, фтора, астат. Реакции, характерные для данных галогенов, сферы их использования.

    презентация , добавлен 11.03.2011

    Общая характеристика химических элементов IV группы таблицы Менделеева, их нахождение в природе и соединения с другими неметаллами. Получение германия, олова и свинца. Физико-химические свойства металлов подгруппы титана. Сферы применения циркония.

    презентация , добавлен 23.04.2014

    Галогены - химические элементы, относящиеся к главной подгруппе VII группы периодической системы Менделеева. К галогенам относят фтор, хлор, бром, иод и астат. Все галогены - энергичные окислители, поэтому встречаются в природе только в виде соединений.

    реферат , добавлен 20.03.2009

    Хлор - 17-й элемент периодической таблицы химических элементов третьего периода, с атомным номером 17. Химически активный неметалл, входит в группу галогенов. Физические свойства хлора, взаимодействие с металлами и неметаллами, окислительные реакции.

    презентация , добавлен 26.12.2011

    Свойства элементов подгруппы азота, строение и характеристика атомов. Увеличение металлических свойств при переходе элементов сверху вниз в периодической системе. Распространение азота, фосфора, мышьяка, сурьмы и висмута в природе, их применение.

    реферат , добавлен 15.06.2009

    Физические и химические свойства галогенов, их положение в Периодической таблице элементов Менделеева. Основные источники и биологическое значение хлора, брома, иода, фтора. Нахождение галогенов в природе, их получение и промышленное использование.

    презентация , добавлен 01.12.2014

    Общая характеристика металлов. Определение, строение. Общие физические свойства. Способы получения металлов. Химические свойства металлов. Сплавы металлов. Характеристика элементов главных подгрупп. Характеристика переходных металлов.

К p-элементам VII ­группы относятся – фтор (F ), хлор (Сl ), бром (Вr ), йод (I ) и астат (Аt ). Данные элементы называют галогенами (рождающие соли). Все элементы данной подгруппы – неметаллы.

Общая электронная формула валентной зоны атомов имеет вид ns 2 np 5 , из которой следует, что на внешнем элек­тронном слое атомов рас­сматриваемых элементов находится семь электро­нов и они могут проявлять нечетные валентности 1, 3, 5, 7. У атома фтора отсутствует d-подуровень, поэтому возбужденные состояния отсутствуют и валентность фтора равна только 1.

Фтор – самый электроотрицательный элемент в периодической таблице и соответственно в соединениях с другими элементами проявляет только отрицательную степень окисления –1. Остальные галогены могут иметь степени окисления –1, 0, +1, +3, +5, +7. Каждый галоген в своем периоде является наиболее сильным окислителем. С повышением поряд­кового номера элементов в ряду F, С1, Br, Iи At увеличиваются радиусы атомов и уменьшается окислительная активность элементов.

Молекулы простых веществ двухатомны: F 2 , С1 2 , Br 2 , I 2 . При нормальных условиях фтор – газ бледно-жёлтого цвета, хлор – газ жёл­то-зелёного цвета, бром – красно-бурая жидкость, йод – кристаллическое вещест­во темно-фиолетового цвета. Все галогены обладают очень резким запахом. Вдыхание их приводит к тяжелым отравлениям. При нагревании йод сублимируется (возгоняется), превращаясь в пар фиолетового цвета; при охлаждении пары йода кристаллизуются, минуя жидкое состояние.

Галогены слабо растворимы в воде, но значительно лучше в органических растворителях. Фтор нельзя растворить в воде, так как он разлагает её:

2F 2 + 2Н 2 O = 4НF + О 2 .

При растворении хлора в воде происходит его частичное самоокисление-самовосстановление по реакции

С1 2 + Н 2 O ↔ НС1+ НС1О.

Полученный раствор называется хлорной водой. Он обладает сильными кислотными и окислительными свойствами и применяется для обеззараживания питьевой воды.

Галогены вступают во взаимодействие с многими простыми веществами, проявляя свойства окислителей. Фтор с многими неме­таллами реагирует со взрывом:

Н 2 + F 2 → 2HF,

Si + 2F 2 → SiF 4 ,

S + 3F 2 → SF 6 .

В атмосфе­ре фтора горят такие устойчивые вещества, как стекло в виде ваты и вода:

SiО 2 + 2F 2 → SiF 4 + О 2 ,

2Н 2 О + 2F 2 → 4HF + О 2 .

Фтор непосредственно не взаимодей­ствует только с кислородом, азотом, гелием, неоном и аргоном.

В атмосфере хлора сгорают многие металлы, образуя хлориды:

2Na + С1 2 → 2NaCl (яркая вспышка);

Сu + С1 2 → СuС1 2,

2Fe + 3Сl 2 → 2FeCl 3 .

Хлор непосредст­венно не взаимодействует с N 2 , О 2 и инертными газами.


Окислительная активность галогенов уменьшается от фтора к астату, а вос­становительная активность галогенид-ионов в этом направлении увеличивается. Из этого следует, что более активный галоген вытесняет менее активный из растворов его солей:

F 2 + 2NaCl → Cl 2 + 2NaF,

Cl 2 + 2NaBr → Br 2 + 2NaCl,

Вг 2 + 2NaI → I 2 + 2NaBr.

Водородные соединения галогенов хорошо растворимы в воде. Их водные растворы представляют собой кислоты:

HF– фтороводородная (плавиковая) кис­лота,

НС1 – хлороводородная кислота (водный раствор – соляная),

НВг – бромоводородная кислота,

HI – йодоводородная кислота.

НF должна быть одной из самых сильных кислот, но вследствие образования водородной связи (Н–F···Н–F) является слабой кислотой. Подтверждением наличия водородной связи между молекулами Н–F, как и в случае воды, является аномально высокая температура кипения Н–F.

Плавиковая кислота реагирует с SiО 2, поэтому HF нельзя получать и хранить в стеклянной посуде

SiО 2 + 4HF = SiF 4 + 2Н 2 О.

Остальные галогенводороды являются сильными кислотами.

Хлор, бром и йод образуют кислородсодержащие кислоты и соответствующие им соли. Ниже, на примере хлора, приведены формулы

кислот и соответствующих им солей:

НСlО, НСlО 2 , НСlО 3 , НСlО 4 ;

хлорноватистая хлористая хлорноватая хлорная

усиление кислотных свойств

КСlО, КСlО 2 , КСlО 3 , КСlО 4 .

гипохлорит калия хлорит калия хлорат калия перхлорат калия

Хлорная и хлорноватая кислоты являются сильными, а хлористая и хлорноватистая – слабыми. Из солей можно отметить:

СаОС1 2 – «хлорная известь» представляет собой сме­шанную соль соляной и хлорноватистой кислот.

КСlO 3 – хлорат калия, техническое название – бертолетова соль.

Фтор и его соединения применяются для получения термоустойчивых пластмасс (тефлон), хладагентов (фреоны) для холодильных машин.

Хлор используется в больших количествах для производства соляной кис­лоты синтетическим методом, хлорорганических инсектицидов, пластмасс, син­тетических волокон, хлорной извести, отбеливания тканей и бумаги, хлорирова­ния воды в целях обеззараживания, для хлорирования руд при получении металлов.

Соединения брома и йода используются для производства лекарственных препаратов, фотоматериалов.

Элементы, входящие в VII группу периодической системы, делятся на две подгруппы: главную - подгруппу галогенов - и побочную - подгруппу марганца. В эту же группу помещают н водород, хотя его атом имеет на внешнем, валентном, уровне единственный электрон и его следовало бы поместить в I группу. Однако водород имеет очень мало общего как с элементами основой подгруппы - щелочными металлами, так и с элементами побочной подгруппы - медью, серебром и золотом. В то же время он, как и галогены, присоединяя в реакциях с активными металлами электрон, образует гидриды, имеющие некоторое сходство с галогенидами.

К подгруппе галогенов относятся фтор, хлор, бром, иод и астат. Первые четыре элемента встречаются в природе, последний получен искусственно и поэтому изучен значительно меньше остальных галогенов. Слово галоген означает солеобразующий. Это название элементы подгруппы получили благодаря легкости, с которой они реагируют со многими металлами, образуя соли.

Все галогены имеют структуру внешней электронной оболочки s 2 p 5 . Поэтому они легко принимают электрон, образуя устойчивую благородногазовую электронную оболочку (s 2 р 6). Наименьший радиус атома в подгруппе - у фтора, у остальных он увеличивается в ряду F

Из всех галогенов только фтор, находящийся во II периоде, не имеет незаполненного d-уровня. По этой причине он не может иметь больше одного неспаренного электрона и проявляет валентность только 1. В атомах других галогенов d-уровень не заполнен, что дает им возможность иметь различное количество неспаренных электронов и проявлять валентность 1, +1, +3, +5 и +7, наблюдающуюся в кислородных соединениях хлора, брома и иода.

К подгруппе марганца принадлежат марганец, технеций и рений. В отличии от галогенов элементы подгруппы марганца имеют на внешнем электронном уровне всего два электрона и поэтому не проявляют способности присоединять электроны, образуя отрицательно заряженные ионы.

Марганец распространен в природе и широко используется в промышленности.

Технеций радиоактивен, в природе не встречаемся, а получен искусственно (впервые - Э. Сегре и К. Перрье, 1937}. Этот элемент образуется вследствие радиоактивного распада урана. Рений относится к числу рассеянных элементов. Он не образует самостоятельных минералов, а встречается в качестве спутника некоторых минералов, особенно молибденовых. Он был открыт В. и И. Ноддак в 1925 г. Сплавы, имеющие небольшие добавки рения, обладают повышенной устойчивостью против коррозии. Добавка рения к и ее сплавам увеличивает их механическую прочность. Это свойство рения позволяет применять его вместо благородного металла иридия. Платино-платинорениевые термопары работают лучше платино-платиноиридиевых, но их нельзя использовать при очень высоких температурах, так как образуется летучее соединение Re 2 O 7 .

65. Водород

Водород бы открыт английским физиком и был Г. Кавендишем в 1766 г.

Нахождение в природе. Содержание водорода в земной коре, или его кларк, составляет 0,15 %. Этот элемент входит в состав многих минералов, всех органических соединений, а также воды, которая покрывает почти 3/4 поверхности Земного шара. В свободном состоянии водород встречается в небольших количествах в верхних слоях атмосферы и некоторых природных горючих газах.

Физические свойства. При обычных условиях водород - газ без цвета и запаха. Водород - самый легкий из всех элементов: в 14,5 раза легче воздуха, слабо растворим в воде (в 100 объемах воды при комнатной температуре растворяются 2 объема водорода). При температуре 253 С и атмосферном давлении водород переходит в жидкое состояние, а при 259 С затвердевает. Из-за малой молекулярной массы он.легко диффундирует (проходит) через пористые перегородки и даже через нагретую металлическую перегородку. Вот почему резиновые шарики, наполненные водородом и очень тщательно завязанные, спустя некоторое время сдуваются. При повышенной температуре водород хорошо растворим во многих металлах (никеле, платине, палладии).

В природе водород существует в виде трех изотопов: протий - с массовым числом 1, дейтерий - с массовым числом 2 и тритий - с массовым числом 3. 99,98 % природного водорода составляет протий.

Химические свойства. Атом водорода имеет всего один электрон, поэтому при образовании химических соединений может легко отдавать его, либо образовывать одну общую электронную пару, либо присоединять еще один электрон, образуя двухэлектронную внешнюю оболочку, как у благородного газа гелия.

Из-за малого заряда ядра атом водорода сравнительно слабо притягивает электроны и может присоединять их только в том случае, когда другой элемент легко их отдает. Такими элементами являются щелочные и щелочноземельные металлы, которые при нагревавши в атмосфере водорода образуют солеобразные соединения - гидриды:

2 К+ Н 2 = 2 КН (гидрид калия)

Са + Н 2 = СаН 2 (гидрид кальция)

Для водорода более характерны соединения, в которых он проявляет положительную степень окисления. Он взаимодействует со многими неметаллами. В зависимости от активности неметаллов реакция может протекать с различной скоростью. Так, со фтором водород взаимодействует всегда со взрывом:

F 2 + H 2 = 2 НF {фтороводород)

Хлор взаимодействует с водородом значительно спокойнее: в темноте и без нагревания реакция протекает довольно медленно, на свету - значительно быстрее, а при наличии инициатора (искра, нагревание) - моментально и со взрывом. Поэтому смесь хлора и водорода является гремучей и требует чрезвычайной осторожности в обращении. Водород хорошо горит в атмосфере хлора. Во всех случаях реакция водорода с хлором протекает по уравнению

Н 2 + С1 2 = 2 НС1 (хлороводород)

С бромом и иодом водород реагирует очень медленно.

Так же активно, как с хлором, водород реагирует и с кислородом

2 Н 2 + О 2 = 2 Н 2 О

Смесь водорода с кислородом тоже является гремучей и при наличии инициатора взрывается.

С другими неметаллами водород реагирует либо при высокой температуре, либо при высоких. температуре и давлении. Например, с серой водород реагирует только при нагревании, а с азотом - при нагревании и высоком давлении:

Н 2 + S = Н 2 S (сероводород)

3 H 2 + N 2 = 2 NН 3 (аммиак)

Водород может отнимать кислород или галогены от многих металлов и неметаллов. В этом случае он выступает как восстановитель:

СuО + Н 2 = Сu + Н 2 О

СuСl 2 + Н 2 = Сu + 2 НС1

Эти реакции используются в металлургии для получения свободных металлов. Они, как правило, протекают при высоких температурах. Чем активнее металл, тем более высокая температура требуется для его восстановления.

Атомарный водород более активен, чем молекулярный, поэтому все характерные для водорода реакции с атомарными водородом протекают более энергично. Если молекулярный водород восстанавливает металлы из.солей только при нагревании, то атомарный водород может восстанавливать многие металлы из их солей даже в водных растворах.

Образование молекулы водорода из его атомов сопровождается выделением большого количества теплоты:

Н + Н = Н 2 + 435 кДж

Если направить ток газа, содержащего атомарный водород, на твердое тело, то за счет. теплоты, выделяющейся вследствие образовании молекул водорода из атомов, температура поверхности тела повысится до 4000 С. Эту реакцию используют при сварочных работах.

Получение. В лабораторных условиях водород получают:

1) взаимодействием металла (чаще всего цинка) с соляной или

разбавленной серной. кислотой:

Zn + 2 НСl = ZnС1 2 + Н 2 

В ионной форме уравнение имеет следующий вид:

Zn + 2 Н  = Zn 2  + Н 2 

Реакцию проводят в аппарате Киппа (рис. 40) . В средний шар загружают гранулированный" цинк, а верхний при закрытом кране заполняют раствором кислоты. В работающем аппарате кислота из верхнего шара опускается в нижнюю емкость, откуда попадает в средний шар, где реагирует с цинком. Реакция при открытом кране продолжается до полного растворения цинка. Если кран закрыть, водород из среднего шара не выходит и вытесняет из него кислоту в нижнюю емкость, откуда избыток ее переходит в верхний шар. Реакция прекращается. Как только кран открывают, кислота снова контактирует с цинком, образуется водород;

2) взаимодействием со щелочами металлов, гидроксиды которых обладают амфотерными свойствами (алюминий, цинк):

Zn + 2 КОН + 2 Н 2 О = К 2 + Н 2 

2 А1 + 6 КОН + 6 Н 2 О = 2 К 3 [А1(ОН) 6 ] + 3 Н 2 

3) электролизом воды, к которой для увеличения электроводности прибавляют электролит - щелочь или сульфат щелочного металла. Хлориды для этой цели менее пригодны, так как при их электролитическом разложении на аноде выделяется хлор.

В промышленности водород получают другими способами:

1) обработкой раскаленного угля водяным паром в специальных аппаратах - газогенераторах. В результате взаимодействия водяного пара с углеродом образуется так называемый водяной газ, состоящий из водорода и монооксида углерода:

С + Н 2 О = СО + Н 2

При обработке водяного газа водяным паром в присутствии железного катализатора монооксид углерода превращается в диоксид, который легко растворяется в воде при повышенном давлении или в растворах щелочей:

СО + Н 2 О = СО 2 + Н 2

СО 2 + Н 2 О  Н 2 СО 3

СО 2 + 2 КОН = К 2 СО 3 + Н 2 О

2) конверсией (превращением) метана с водяным паром, углекислым газом или смесью водяного пара и углекислого газа:

СН 4 + Н 2 О = СО + 3 Н 2

СН 4 + СО 2 = 2 СО + 2 Н 2

3 СН 4 + СО 2 + 2 Н 2 О = 4 СО + 8 Н 2

Эти процессы протекают при температуре около 1000 С в присутствии катализатора на основе никеля с добавками оксидов магния, алюминия и других металлов. Полученная смесь может использоваться как сырье для производства различных органических веществ (метанола, альдегидов, углеводородов и др.) или получения водорода (смесь обрабатывают водяным паром, как показало выше);

3) как побочный продукт производства хлора и гтдроксидов щелочных металлов электролизом растворов их хлоридов.

Применение. Водород - ценное сырье для химической промышленности. Он, используется для получения аммиака, метанола, альдегидов, углеводородов, превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.). Благодаря высокой температуре горения в кислороде водород применяют также при резке и сварке металлов (автоген).

66. Хлор

Хлор был открыт шведским химиком К. В. Шееле в 1774 г.

Нахождение в природе. Из-за высокой активности хлор в свободном состоянии в природе не встречается. Широко известны его природные соединения - хлориды щелочных и щелочноземельных металлов, наиболее распространенными из которых являются каменная (поваренная) соль NаС1, сильвинит - смесь хлоридов калия и натрия - и карналлит КС1·МgC1 2 ·6Н 2 О. Как примеси к названным минералам встречаются хлориды других металлов. Значительное количество хлоридов различиях металлов содержится в морской воде.

Физические свойства. При обычных условиях хлор - газ желто-зеленого цвета с резким запахом, ядовит. Он в 2,5 раза тяжелее воздуха. В 1 объеме воды при 20 С растворяется около 2 объемов хлора. Такой раствор называется хлорной водой. При атмосферном давлении хлор при 34 С переходит в жидкое состояние, а при 101 С затвердевает. При комнатной температуре он переходит в жидкое состоянии только при давлении 600 кПа (6 атм). Хлор хорошо растворим во многих органических растворителях, особенно в тетрахлориде углерода, с которым не взаимодействует.

Химические свойства. На внешнем электронном уровне атома хлора находятся 7 электронов (s 2 p 5), поэтому он легко присоединяет электрон, образуя анион Сl  . Благодаря наличию незаполненного d-уровня в атоме хлора могут появляться 1, 3, 5 и 7 неспаренных электронов, поэтому в кислородсодержащих соединениях он может иметь степень окисления +1, +3, +5 и +7.

В отсутствие влаги хлор довольно инертен, но в присутствии даже следов влаги активность его резко возрастает. 0н хорошо взаимодействует с металлами:

2 Fе + 3 С1 2 = 2 FеС1 3 (хлорид железа (III)

Cu + С1 2 = СuС1 2 (хлорид меди (II)

и многими неметаллами:

Н 2 + С1 2 = 2 НСl (хлороводород)

2 S + С1 2 = S 2 Cl 2 (хлорид серы (1))

Si + 2 С1 2 = SiС1 4 (хлорид кремния. (IV))

2 Р + 5 С1 2 = 2 РС1 5 (хлорид фосфора (V))

С кислородом, углеродом и азотом хлор в непосредственное взаимодействие не вступает.

При растворении хлора в воде образуется две кислоты: хлороводородная, или соляная, и хлорноватистая:

С1 2 + Н 2 О = НСl + НСlO

При взаимодействии хлора с холодными растворами щелочей образуются соответствующие соли этих кислот:

С1 2 + 2 NaOН = NaС1 + NaClО + Н 2 О

Полученные растворы называются жавелевой водой, которая, как и хлорная вода, обладает сильными окислительными свойствами благодаря наличию иона ClO  и применяется для отбеливания тканей и бумаги. С горячими растворами щелочей хлор образует соответствующие соли соляной и хлорноватой кислот:

3 С1 2 + 6 NаОН = 5 NаСl + NаС1O 3 + 3 Н 2 О

3 С1 2 + 6 КОН = 5 КСl + КС1O 3 + 3 Н 2 О

Образовавшийся хлорат калия называется бертолетовой солью.

При нагревании хлор легко взаимодействует со многими органическими веществами. В предельных и ароматических углеводородах он замещает водород, образуя хлорорганическое соединение и хлороводород, а к непредельным присоединяется по месту двойной или тройной связи. При очень высокой температуре хлор полностью отбирает водород у углерода. При этом образуются хлороводород и сажа. Поэтому высокотемпературное хлорирование углеводородов всегда сопровождается сажеобразованием.

Хлор - сильный окислитель, поэтому легко взаимодействует со сложными веществами, в состав которых входят элементы, способные окисляться до более высокого валентного состояния.

2 FеС1 2 + С1 2 = 2 FеС1 3

Н 2 SO 3 + С1 2 + Н 2 О = Н 2 SО 4 + 2 НСl

Получение. В лабораторных условиях хлор получают действием концентрированной соляной кислоты на различные окислители, например диоксид марганца (при нагревании), перманганат калия или бертолетову соль:

МпО 2 + 4 НСl = МпС1 2 + С1 2 + 2 Н 2 О

2 КМпО 4 + 16 НСl = 2 КС1 + 2 МnС1 2 + 5 С1 2 + 8 Н 2 О

КС1O 3 + 6 НСl = КС1 + 3 С1 2 + 3 Н 2 О

В промышленности хлор получают электролизом растворов, или расплавов хлоридов щелочных металлов. При электролизе расплава хлорида щелочного металла на катоде выделяется щелочной металл, а на аноде - хлор:

2 Nа  + 2е  = 2 Nа

2 Сl   2е  = Сl 2

В растворе хлорид щелочного металла диссоциирует на ионы:

NаС1  Na  + С1 

Вода как слабый электролит также диссоциирует на ионы:

Н 2 О  Н  + OH 

При пропускании электрического тока через такой раствор на катоде из двух катионов - Nа  и Н  - разряжается катион менее активного водорода, а на аноде из двух анионов - ОН  и Сl  - хлорид-ион:

2 Н  + 2 е  = Н 2

2 Сl 2 е  = С1 2

По мере протекания электролиза в катодном пространстве накапливаются ионы ОН  и образуется едкий натр. Так как хлор может реагировать со шелочью катодное и анодное пространства разделено полупроницаемой диафрагмой из асбеста.

Применение. Ежегодное мировое потребление хлора превышает 1 млн. т. Он используется для отбеливания бумаги и тканей, обеззараживания питьевой воды, производства различных. ядохимикатов, соляной кислоты, хлорорганических веществ и растворителей, а также в лабораторной практике.

Хлороводород и соляная кислота. Хлороводород представляет собой бесцветный газ с резким, удушливым запахом. При атмосферном давлении и температуре 84 С он переходит в жидкое состояние, а при 112 С затвердевает. Хлороводород в 1,26 раза тяжелее воздуха. В 1 л воды при 0 С растворяется около 500 л хлороводорода.

Сухой хлороводород довольно инертный и не реагирует даже с активными металлами, а в присутствии следов влаги такая реакция протекает довольно энергично.

Хлороводород может присоединяться к непредельным углеводородам по месту двойной или тройной связи, образуя хлорорганические соединения.

В лабораторных условиях хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия:

NаСl + H 2 SО 4 = NаНSO 4 + НСl

2 NаСl + Н 2 SO 4 = Nа 2 SO 4 + 2 НСl

Первая из этих реакций протекает при слабом нагревании, а вторая - при более высокой температуре. Поэтому получать хлороводород в лаборатории лучше по первому уравнению и серной кислоты следует брать столько, сколько требуется для образования гидросульфата натрия.

В промышленности хлороводород получают действием концентрированной серной кислоты на сухой хлорид натрия при высокой температуре (по второму уравнению), а также сжиганием водород в атмосфере хлора:

Н 2 + Сl 2 = 2 НС1

Хлороводород образуется в значительных количествах как побочный продукт при хлорировании насыщениях и ароматических углеводородов.

Раствор хлороводорода в воде называется соляной кислотой . Это сильная кислота, она реагирует со всеми металлами, стоящими в ряду напряжений левее водорода, с основными и амфотерными оксидами, основаниями и солями:

Fе + 2 НС1 = FеС1 2 + Н 2 

СuО + 2 НСl = СuСl 2 + Н 2 О

ZnO + 2 НСl = ZnС1 2 + Н 2 О

Fе(ОН) 3 + 3 НСl = FеСl 3 + 3 H 2 О

АgNО 3 + НСl = АgCl + НNО 3

Nа 2 СO 3 + 2 НCl = 2 NаСl + Н 2 О + СО 2 

Кроме свойств, присущих сильным кислотам, эта кислота характеризуется также восстановительными свойствами: концентрированная соляная кислота реагирует с различными сильными окислителями с образованием свободного хлора.

Соли соляной кислоты называются х л о р и д а м и. Большинство из них хорошо растворяется в воде и полностью диссоциирует на ионы. Слабораствориными являются хлорид свинца РbСl 2 , хлорид серебра AgCl, хлорид ртути (I) Нg 2 Сl 2 (каломель) и хлорид мели (I) СuСl.

Cолянyю кислоту получают растворением хлороводорода в воде. Этот процесс осуществляют в специальных поглотительных башнях, в которых жидкость подается сверх вниз, а газ - снизу вверх (принцип противотока). В такой башне свежие порции воды в верхней части башни встречаются с газовым потоком, содержащим уже мало хлороводорода, а газ с высоким содержанием хлороводорода в нижней части башни встречается с концентрированной соляной кислотой. Так как растворимость газа в жидкости прямо пропорциональна концентрации его в газовой фазе и обратно пропорциональна концентрации его в растворе, при этом методе достигается полное извлечение хлороводорода из газа и получение концентрированного раствора соляной кислоты. Насыщенный при комнатной температуре водный раствор хлороводорода может содержать не более 42 масс. % хлороводорода и его плотность не превышает 1,20 г/см 3 . Поступающая в продажу соляная кислота содержит 36-37 хлороводорода и имеет плотность 1,19 г/см 3 .

Соляную кислоту хранят и транспортируют в стальных цистернах, покрытых изнутри кислотоупорной резиной, или в стеклянных баллонах.

Хлороводород, соляная кислота и ее соли широко используют в промышленности и лабораторной практике. Хлороводород применяют в органическом синтезе для получения хлорорганических соединений. Соляную кислоту используют для получения солей, травления металлов, а также как реактив в химических лабораториях.

Из солей соляной кислоты наибольшее применение находит:

каменная, или поваренная , соль NаС1. Она используется как сырье для получения хлора, металлического натрия, едкого натра, хлороводорода и соды, а также в пищевой промышленности;

хлорид калия КС1. Применяется как калийное удобрение, а также как сырье для получения других солей калия и едкого кали;

хлорид кальция СаС1 2 . Безводная соль применяется для высушивания газов и многих органических жидкостей и как осушительный агент в эксикаторах. При этом образуется кристаллогидрат СuСl 2 ·nН 2 О (n = 2-6). Насыщенный водный раствор хлорида кальция используют для обогащения сырья флотационным методом;

хлорид бария ВаС1 2 . Применяется как ядохимикат в сельском хозяйстве;

хлорид цинка ZnCl 2 . Используется при пайке для снятия пленки оксидов (травление металла), а также для пропитки деревянных предметов с целью предохранения их от гниения при закапывании в землю.

Кислородные соединения хлора . Хлор образует четыре кислородсодержащие кислоты: хлорнотистую, хлористую, хлорноватую и хлорную.

Хлорноватистая кислота НСlO образуется при взаимодействии хлора с водой, а также ее солей с сильными минеральными кислотами. Она относится к слабым кислотам, очень неустойчива. Состав продуктов реакции ее разложения зависит от условий. При сильном освещении хлорноватистой кислоты, наличии в растворе восстановителя, а также длительном стоянии она разлагается с выделением атомарного кислорода:

НСlO = HСl + O

В присутствии водоотнимающих веществ образуется оксид хлора (I):

2 НСlO = 2 Н 2 О + Сl 2 O

3 НСlO = 2 НСl + НСlO 3

Поэтому при взаимодействии хлора с горячим раствором щелочи образуется соли не соляной и хлорноватистой, а соляной и хлорноватой кислот:

6 NаОН + 3 Сl 2 = 5 NаСl + NаСlО 3 + 3 Н 2 О

Соли хлорноватистой кислоты - г и п о х л о р и т ы - очень сильные окислители. Они образуются при взаимодействии хлора со щелочами на холоду. Одновременно образуются соли соляной кислоты. Из таких смесей наибольшее распространение получили хлорная известь и жавелевая вода.

Хлорная, или белильная, известь СаОСl 2 , или СаСl(СlO), образуется при взаимодействии хлора с порошкообразным гидроксидом кальция - пушенкой :

Са(ОН) 2 + Сl 2 = ClOCaCl + H 2 O

2 Са(ОН) 2 + 2 Сl 2 = СаСl 2 + Са(ОСl) 2 + 2 Н 2 О

Качество хлорной извести определяется содержанием в ней гипохлорита. Она обладает очень сильными окислительными свойствами и может окислять даже соли марганца до перманганат:

5 СаОСl 2 + 2 Mn(NО 3) 2 + 3 Са(ОН) 2 = Са(МпO 4) 2 + 5 СаСl 2 + 2 Са(NО 3) 2 + 3 H 2 O

Под действием углекислого газа, содержащегося в воздухе, она разлагается с выделением хлора:

СаОСl 2 + СО 2 = СаСО 3 + Сl 2

СаСl 2 + Са(ОСl) 2 + 2 СО 2 = 2 СаСО 3 + 2 Сl 2

Хлорная известь применяется как отбеливающее и дезинфицирующее

вещество.

Хлористая кислота НСlO 2 образуется при действии концентрированной серной кислоты на хлориты щелочных металлов, которые получаются как промежуточные продукты при электролизе растворов хлоридов щелочных металлов в отсутствие диафрагмы между катодным и анодным пространствами. Это слабая, неустойчивая кислота, очень сильный окислитель в кислой среде. При взаимодействии ее с соляной кислотой выделяется хлор:

НСlO 2 + 3 НС1 = Сl 2 + 2 Н 2 О

Хлориты натрия используются для получения диоксида хлора, при обеззараживании воды, а также как отбеливаюший агент.

Хлорноватая кислота НСlO 3 образуется при действии на ее соли -

х л о р а т ы - серной кислоты. Это очень неустойчивая кислота, очень сильный окислитель. Может существовать только в разбавленных растворах. При упаривании раствора НСlO 3 при низкой температуре в вакууме можно получить вязкий раствор, содержащий около 40 % хлорной кислоты. При более высоком содержании кислоты раствор разлагается со взрывом. Разложение со взрывом происходит и при меньшей концентрации в присутствии восстановителей. В разбавленных растворах хлорная кислота проявляет окислительные свойства, причем реакции протекают вполне спокойно:

НСlO 3 + 6 НВr = НСl + 3 Вr 2 + 3 Н 2 О

Соли хлорноватой кислоты - хлораты - образуются при электролизе растворов хлоридов в отсутствие диафрагмы между катодным и анодным пространствами, а также при растворении хлора в горячем растворе щелочей, как показано выше. Образующийся при электролизе хлорат калия (бертолетова соль) слабо растворяется в воде и в виде белого осадка легко отделяется от других солей. Как и кислота, хлораты - довольно сильные окислители:

КСlO 3 + 6 НСl = КСl + 3 Сl 2 + 3 Н 2 О

Хлораты применяются для производства взрывчатых веществ, а также получения кислорода в лабораторных условиях и солей хпорной -кислоты - п е р х л о р а т о в. При нагревании бертолетовой соли в присутствии диоксида марганца МпО 2 , играющего роль катализатора, выделяется кислород. Если же нагревать хлорат калия без катализатора, то он разлагается с образованием калиевых солей хлороводородной и хлорной кислот:

2 КСlО 3 = 2 КСl + 3 O 2

4 КСlO 3 = КСl + 3 КСlO 4

При обработке перхлоратов концентрированной серной кислотой можно получить хлорную кислоту :

КСlO 4 + Н 2 SO 4 = КНSO 4 + НСlO 4

Это самая сильная кислота. Она наиболее устойчива из всех кислород содержащих кислот хлора, однако безводная кислота при нагревании, встряхивании или контакте с восстановителями может разлагаться со взрывом. Разбавленные растворы хлорной кислоты вполне устойчивы и безопасны в работе. Хлораты калия, рубидия, цезия, аммония и большинства органических оснований плохо растворяются в воде.

В промышленности перхлорат калия получают электролитическим окислением бертолетовой соли:

2 Н  + 2 е  = Н 2  (на катоде)

СlО 3   2 е  + Н 2 О = СlO 4  + 2 Н  (на аноде)

67. Бром

Бром был открыт в 1826 г. французским химиком А. Ж. Баларом.

Нахождение в природе . В свободном состоянии бром в природе не встречается. Он не образует также самостоятельных минералов, а его соединения (в большинстве случаев со щелочными металлами) являются примесями хлорсодержащих минералов, таких, как каменная соль, сильвинит и карналит. Соединения брома встречаются также в водах некоторых озер и буровых скважин.

Физические свойства . Бром - легколетучая красно-бурая жидкость с неприятным, удушливым запахом. Кипит при 58,8 С и затвердевает при 7,3 С. В 1 л воды при 20 С растворяется 35 г брома.

В органических растворителях бром растворяется значительно лучше.

Химические свойства . По химическим свойствам бром напоминает хлор. На внешнем электронном уровне его атома находится 7 электронов (s 2 p 5), поэтому он легко присоединяет электрон, образуя ион Br  . Благодаря наличию незаполненного d-уровня бром может иметь 1, 3, 5 и 7 неспаренных электронов и в кислородсодержащих соединениях проявляет степень окисления +1, +3, +5 и +7.

Подобно хлору бром взаимодействует с металлами и неметаллами:

2 Al + 3 Вr 2 = 2 AlBr 3 (бромид алюминия)

Н 2 + Вr 2 = 2 НВr (бромоводород)

2 Р + 3 Br 2 = 2 РВr 3 (бромид фосфора (III))

Все реакции брома протекают менее энергично, чем хлора. Менее энергично реагирует бром и с водой. При растворении в воде реагирует только часть брома, образуя бромоводородную и бромноватистую кислоты:

Вr 2 + Н 2 О  НВr + НВrО

При растворении брома в растворе щелочи на холоду образуются соли

этих кислот:

Вr 2 + 2 NаОН = NaBr + NаВrО + Н 2 О

С предельными и непредельными углеводородами бром также реагирует менее энергично, чем хлор:

С 6 Н 6 + Вr 2 = С 6 H 5 Br + НВr

СН 2 =СН 2 + Вr 2 = СH 2 ВrСН 2 Вr

Бром, как и хлор, является окислителем. Так, он легко окисляет сернистую кислоту до серной:

Н 2 SO 3 + Вr 2 + Н 2 О = Н 2 SО 4 + 2 НВr

Если к раствору сероводорода прибавить бромную воду, то красно-бурая окраска исчезает и раствор мутнеет вследствие выделения серы:

Н 2 S + Вr 2 = 2 НBr + S

Получение . В лабораторных условиях бром получают действием на различные окислители бромоводородной кислоты или ее солей в сернокислотной среде:

2 КМnO 4 + 16 НВr = 2 КВr + 2 МnВr 2 + 5 Вr 2 + 8 Н 2 О

КСlO 3 + 6 НВr = КСl + 3 Вr 2 + 3 Н 2 O

2 КМnO 4 + 10 КBr + 8 Н 2 SO 4 = 6 К 2 SО 4 + 2 МnSO 4 + 5 Вr 2 + 8 Н 2 О

В промышленности бром получают действием хлора на различные бромиды:

2 КВr + Сl­ 2 = 2 КСl + Вr 2

Применение . Бром применяют для получения различных броморганических соединений, используемых в лакокрасочной и фармацевтической промышленности. Значительные количества брома расходуются для получения бромида серебра, используемого в качестве светочувствительного вещества при изготовлении кинофотоматериалов.

Бромоводород и бромоводородная кислота . Бромоводород - это бесцветный газ с резким запахом, переходящий при 66,8 С в жидкость, затвердевающую при 87 С. В 1 л воды при 0 "С растворяется около 500 л бромводорода.

Химические свойства бромводорода и его водного раствора -бромоводородной кислоты - аналогичны свойствам хлороводорода и соляной кислоты с той лишь разницей, что бромоводородная кислота является более сильной кислотой, а бромоводород - более сильным восстановителем.

Бромводород легко присоединяется по месту двойной или тройной связи непредельных углеводородов, образуя бромпроизводные соответствующих органических соединений:

СН 3 СН=СН 2 + НВr = СН 3 СНВrСН 3

Пропилен Изопропилбромид

Из-за легкой окисляемости бромводорода его нельзя получить действием концентрированной серной кислоты на бромиды щелочных металлов при нагревании, так как серная кислота окисляет бромиды

до свободного брома:

2 КBr + 2 Н 2 SO 4 = К 2 SO 4 + SO 2 + Вr 2 + 2 Н 2 О

Свободный от брома бромоводород получают взаимодействием трибромида фосфора с водой:

РВr 3 + 3 Н 2 О = Н 3 РО 3 + 3 НВr

Бромоводородная кислота используется для получения бромидов различных металлов, особенно бромида серебра, который используется в производстве светочувствительных кинофотоматериалов.

Большинство солей бромоводородной кислоты (б р о м и д о в) хорошо растворимо в воде. Нерастворимыми солями являются бромид серебра АgВr, бромид ртути (I) Нg 2 Вr 2 , бромид меди (I) СuВr и бромид свинца РbВr 2 .

Кислородные соединения брома аналогичны кислородным соединениям хлора, но кислоты являются более слабыми электролитами и более слабыми окислителями. Кроме бромата калия КВrО 3 , который применяется в аналитической химии и лабораторной практике, они практического значения не имеют.

68. Иод

Иод был открыт французским химиком-селитроваром Б. Куртуа в 1811 г.

Нахождение в природе . Соединения иода самостоятельных залежей не образуют, а встречаются в виде примесей к минералам хлора. Соли иода содержится в водах буровых скважин. Заметные количества иода входят в состав некоторых морских водорослей, вола которых может быть использована как сырье для получения этого элемента.

Физические свойства . Иод представляет собой твердое темно-серое кристаллическое вещество со слабым металлическим блеском. При медленном нагревании он легко возгоняется, образуя фиолетовые пары. При быстром нагревании иод при 114 С плавится, а при 183 С кипит. Он хорошо растворим в органических растворителях и водном растворе КI. В присутствии КI растворимость его в воде очень незначительна (при 20 С в 1 л воды растворяется 290 мг иода).

Химические свойства . По химическим свойствам иод похож на хлор и бром, однако менее активен. С водородом он реагирует только при нагревании, причем реакция протекает не до конца:

I 2 + Н 2 = 2 НI (иодовород)

При нагревании иод взаимодействует c фосфором:

2 Р+ 3I 2 = 2 РI 3 (иодид фосфора (III))

В присутствии воды, играющей роль катализатора, иод интенсивно, почти со взрывом, реагирует с алюминием:

2 Аl + 3I 2 = 2 АlI 3 (иодид алюминия)

С водой иод почти не реагирует, а со щелочью реагирует аналогично

хлору и брому:

I 2 + 2 КОН = КI + КIO 3 + Н 2 О

3I 2 + 6 КОН = 5 КI + КIO 3 + 3 Н 2 О

Иод обладает окислительными cвойcтвами, которые проявляет в присутствии сильных воccтанователей. Он легко взаимодействует c сернистой кислотой и сероводородом:

Н 2 SO 3 + I 2 + Н 2 О = Н 2 SО 4 + 2 НI

Н 2 S + I 2 = 2 НI + S

При взаимодействии иода с тиосульфатом образуется не сульфат, как

в случае с хлором или бромом, а тетратионат:

I 2 + 2 Nа 2 S 2 O 3 = 2 NаI + Nа 2 S 4 О 6

Эта реакция используется в аналитической химии. Метод анализа, основанный на ее применении, называется иодометрическим. Окончание реакции определяют по появлению или исчезновению синей окраски, которая обусловлена взаимодействием иода с крахмалом.

Получение . В лаборатории иод можно получить аналогично получению хлора или брома действием иодоводородной кислоты на различные окислители (КМnО 4 , МnО 2 , КСlO 3 , КВrО 3 и даже FеСl 3 и СuSO 4):

2 КМnО 4 + 16 НI = 2 КI + 2 MnI 2 + 5I 2 + 8 Н 2 О

КВrО 3 + 6 НI = КВr + 5 I 2 + 3 Н 2 О

2 FеC 3 + 2 НI = 2 FeCl 2 + I 2 + 2 НСl

2 СuSO 4 + 4 НI = 2 СuI + 2 Н 2 SO 4 + I 2

В промышленности иод получают действием хлора на иодиды:

2 КI + СI 2 = 2 КCl + I 2

Применение . Иод применяют в лабораторной практике и медицине. Он входит в состав многих фармацевтических препаратов, а в качестве 5 %ного водно-спиртового раствора используется для обработки ран. Недостаток иода в организме приводит к серьезным заболеваниям (зоб).

Иодоводород и иодоводородная кислота . Иодоводород - это бесцветный, с резким запахом газ, который при 35,4 С превращается в жидкость, а при 50,8 С затвердевает. В 1 л воды растворяется около 500 л иодоводорода, образуя иодоводородную кислоту. Среди бескислородных кислот это наиболее сильная кислота. Она значительно сильнее соляной и даже бромоводородной кислот.

Иодоводородная кислота - очень сильный восстановитель, поэтому окисляется даже кислородом воздуха, вследствие чего раствор ее окрашивается в бурый цвет:

4 НI + O 2 = 2 Н 2 О + 2 I 2

На свету окисление проходит более энергично, чем в темноте, поэтому растворы иодоводородной кислоты хранят в темной стеклянной посуде.

Большинство солей иодоводородной кислоты - и о д и д о в -хорошо растворимо в воде. Нерастворимыми солями иодоводородной

кислоты являются иодид серебра АgI, иодид ртути (I) Нg 2 I 2 , иодид меди (I) СuI и иодид свинца РbI 2 .

Иодоводород получают действием воды на фосфортрииодид:

РI 3 + 3 Н 2 О = Н 3 РО 3 + 3 HI

Получить Иодоводород действием серной кислоты на иодиды щелочных металлов невозможно, так как почти весь иодид окисляется концентрированной серной кислотой до свободного иода:

2 КI + 2 Н 2 SO 4 = К 2 SО 4 + SO 2 + I 2 + 2 Н 2 О

8 КI + 4 Н 2 SO 4 = 3 К 2 SO 4 + К 2 S + 4I 2 + 4 Н 2 О

Иодоводородная кислота применяется только в лабораторной практике.

Кислородные соединения иода аналогичны кислородным соединениям брома. Слабые кислоты НIO, НIO 3 и НIO 4 являются также слабыми окислителями. Они находят применение только в лабораторной практике.

69. Фтор

В свободном состоянии фтор впервые получен французским химиком А. Муассаном в 1886 г.

Нахождение в природе . Из солей фтора наиболее распространен в природе флюорит (плавиковый шпат) СаF 2 . Фтор в виде фторида кальция входит также в состав апатита. 3Са 3 (РО 4 } 2 · СаF 2 (или Са 5 (РО 4) 3 F).

Физические свойства . В обычных условиях фтор представляет собой бесцветный, обладающий резким запахом газ, который в толстых слоях окрашен в зеленовато-желтый цвет. При 181,1 С фтор переходит в жидкое состояние, а при 219,6 С затвердевает. Растворимость фтора не изучена, так как он разрушает почти все растворители.

Химические свойства. На внешнем электронном слое атома фтора находится 7 электронов (s 2 р 5). Так как этот слой расположен ближе к ядру, чем у атомов хлора, брома и иода, фтор сильнее всех галогенов притягивает электроны. Этим объясняется его исключительно высокая химическая активность. Фтор не имеет d-уровня, поэтому не может иметь более одного неспаренного электрона и проявлять другие валентные состояния, кроме единицы.

Фтор взаимодействует почти со всеми элементами, причем реакции протекают более энергично, чем с хлором или кислородом. На поверхности некоторых металлов (Рb, Сu, Ni, Мg) образуется плотная пленка фторида, которая препятствует дальнейшему прохождении реакции.

Неметаллы в порошкообразном состоянии реагируют со фтором очень энергично, а в компактном - значительно труднее. Углерод в виде сажи сгорает в атмосфере фтора мгновенно, а графит реагирует со фтором только при высокой температуре. С кислородом и азотом фтор непосредственно не взаимодействует.

Получение . Свободный фтор из-за высокой реакционной способности выделить очень непросто. Получают его в небольших количествах электролизом расплава дифторида калия КF·НF в свинцовой аппаратуре (образовавшийся на внутренней поверхности стенок электролизера фторид свинца РbF 2 лредохраняет аппарат от разрушения).

Применение . Свободный фтор применяют для получении фторпроизводных органических соединений, которые используются как сырье для производства фторопластов (тефлон), высокотемпературных смазочных масел и жидкостей для холодильных машин (фреонов).

Фтороводород, плавиковая кислота . Фтороводород - газ с резким запахом. При 19,9 С он переходит в жидкое состояние, а при 83,1 С затвердевает. Жидкий фтороводород смешивается с водой в любых соотношениях, Раствор фтороводорода в воде называется фтороводородной или плавиковой кислотой. В отличие от других галогеноводородных кислот плавиковая кислота относится к слабым кислотам. Она хорошо реагирует со многими металлами, основными оксидами, основаниями и солями. В присутствии сильных кислот в ней растворяются многие редкие металлы, которые в других кислотах не растворяются (титан, цирконий, ниобий, тантал и др.). Плавиковая кислота образует со многими металлами очень прочные комплексные фториды: Н 3 FеF 6 , Н 2 ТiF 6 , Н 3 АlF 6 . Натриевая соль Nа 3 АlF 6 , даже в расплаве диссоциирует c образованием иона АlF 6 3  . Фтороводород и плавиковая кислота реагируют с диоксидом кремния с образованием летучего соединения SiF 4:

SiO 2 + 4 НF = SiF 4 + 2 Н 2 О

Так как в состав стекла входит значительное количество диоксида кремния, плавиковая кислота разъедает стекло, поэтому хранить ее можно в посуде, изготовленной из полимерных материалов (полиэтилена, фторопласта или эбонита), или в стеклянной, покрытой изнутри слоем парафина.

Фтороводород применяется для получения фторорганических соединений, в производстве фторопластов, металлургии редких металлов, а также как травильный агент при обработке поверхности некоторых металлов.

Получают фтороводород действием концентрированной серной кислоты на плавиковый шпат СаF 2:

СаF 2 + Н 2 SO 4 = СаSO 4 + 2 НF

Фтороводород образуется также как побочный продукт при переработке апатитов,

70. Марганец

Марганец впервые получили К. В. Шееле и Ю. Ган в 1774 г.

Нахождение в природе . По распространению в природе марганец занимает место после железа. Содержание его в земной коре составляет 0,1 %. Основным минералом, в виде которого марганец встречается в рудах, является пиролюзит МnО 2 . Кроме пиролюзитовых марганцевых руд встречаются марганцевые руды, содержащие браунит Mn 2 О 3 , манганит МпО(ОН), гаусманит Мn 3 O 4 и марганцевый шпат МnCO 3 . Кроме того, марганец в виде оксидов содержится почти во всех железных рудах.

Физические свойства . Марганец - серебристо-белый металл, плотность его 7,2 г/см 3 . Он твердый и хрупкий, при 1260 С плавится, а при 2120 С закипает. На воздухе металл покрывается пестрыми пятнами оксидной пленки, которая предохраняет его от дальнейшего окисления. С железом марганец образует сплавы с любым соотношением компонентов (ферромарганец).

Химические свойства . Марганец образует различные соединения, в которых проявляет степень окисления +2, +3, +4, +6 и +7. Соединения марганца с другими степенями окисления малохарактерны и встречаются очень редко.

При взаимодействии металлического марганца а различными неметаллами образуются соединения марганца (II):

Мn + С 2 = МпСl 2 (хлорид марганца (II))

Мn + S = МnS (cулъфид марганца {II))

3 Мn + 2 Р = Мn 3 Р 2 (фосфид марганца (II))

3 Мn + N 2 = Мn 3 N 2 (нитрид марганца (II))

2 Мn + N 2 = Мn 2 Si (силицид марганца (II))

Марганец легко растворяется в кислотах-неокислителях с выделением водорода:

Мn + 2 НСl = МnСl 2 + Н 2

Мn + Н 2 SO 4 (разб.) = МnSO 4 + Н 2

Он растворяется также в воде в присутствии соединений, дающих при гидролизе кислую реакцию:

Мn + 2 Н 2 О + 2 NН 4 Сl = МnСl 2 + 2 NН 4 ОН + Н 2

Растворение марганца в кислотах-окислителях сопровождается выделением продуктов восстановления этих кислот:

Мn + 2 Н 2 SO 4 (конц.) = МnSO 4 + SO 2 + 2 Н 2 О

Мn + 4 НNО 3 (конц.) = Мn(NО 3) 2 + 2 NО + 2 Н 2 О

3 Мn + 8 НNОз (разб.) = 3 Мn(NО 3) 2 + 2 NО 2 + 4 H 2 О

Марганец может восстанавливать многие оксиды металлов и по этому используется в металлургии:

5 Мn + Nb 2 О 5 = 5 MnО + 2 Nb

3 Мn + Fе 2 О 3 = 3 МnО + 2 Fе

В мелкодисперсном состоянии (порошок) марганец более реакционноспособен, чем в компактном.

Получение . Металлический марганец получают восстановлением его прокаленных оксидов алюминием. Так как алюминий очень бурно реагирует с диоксидом марганца, используют прокаленный пиролюзит. При прокаливании пиролюзита образуется оксид марганца Мn 3 O 4 , который с алюминием реагирует более спокойно:

3 МnО 2 = Мn 3 O 4 + O 2

3 Мn 3 О 4 + 8 Аl = 4 Аl 2 O 3  9 Мn

Для получения ферромарганца, используемого в металлургии, смесь железной руды и пиролюзита восстанавливают коксом в электропечах:

Fе 2 О 3 + МnО 2 + 5 С = 2Fе·Мn + 5 СО

Применение . Марганец в виде ферромарганца используют в черной металлургии.

Кислородные соединения марганца . Марганец образует оксиды МnО, Мn 2 О 3 , МпО 2 , МпО 3 , Мп 2 О 7 , гидроксиды Мn(ОН) 2 , Mn(ОН) 4 , Н 2 МnО 4 , НМnО 4 и соответствующие им соединения.

Монооксид марганца МnО - это порошок зеленовато-серого цвета, обладающий основными свойствами и поэтому реагируюший с кислотами и кислотными оксидами:

МnО + 2 НCl = МnСl 2 + H 2 О

МnО + SO 3 = MnSO 4

В воде монооксид марганца практически нерастворим.

Гидроксид марганца (II) Мn(ОН) 2 - белое вещество, которое легко окисляется на воздухе до бурого гидроксида марганца (IV):

2 Мn(ОH) 2 + O 2 + 2 Н 2 О = 2 Мn(ОН) 4

Образуется гидроксид марганца (II) при взаимодействии его солей со щелочами:

МnSО 4 + 2 КОН = Мn(ОН) 2  + К 2 SО 4

Гидроксид марганца (II) обладает основными свойствами. Он реагирует с кислотами и кислотными оксидами:

Мn(ОН) 2 + 2 НСl = МnСl 2 + 2 Н 2 О

Мn(ОН) 2 + SО 3 = МnSО 4 + Н 2 О

Гидроксид марганца (II) обладает восстановительными свойствами. В присутствии сильных окислителей он может окисляться до перманганата:

2 Мп(ОН) 2 + 5 КВгО + 2 КОН = 2 КМnO 4 + 5 КВг + 3 Н 2 О

При недостаточном количестве окислителя образуется диоксид марганца:

5 Мn(ОН) 2 + КВrО = 5 МnО 2 + КВr + Н 2 О

Большинство солей марганца (II) хорошо растворимо в воде. В сухом виде их кристаллогидраты окрашены в слабо-розовый цвет. Нерастворимыми солями марганца (II) являются карбонат МnСО 3 , сульфид МnS и фосфат Мn 3 (РО 4) 2 . При действии сильных окислителей в кислой среде марганец (II) в зависимости от количества окислителя может переходить в МnО 2 , или перманганат:

Мn(NО 3) 2 + РbО 2 = МnО 2 + Рb(NО 3) 2

2 Мn(NО 3) 2 + 5 РbО 2 + 6 НNО 3 = 2 НМnО 4 + 5 Рb(NО 3) 2 + 2 Н 2 О

Оксид марганца (III) Мn 2 О 3 встречается в природе в виде минерала браунита. В лаборатории образуется при осторожном нагревании МnО 2 при температуре 530-940 С:

4 МnО 2 = 2 Мn 2 О 3 + O 2

При более высокой температуре разложение диоксида сопровождается образованием оксида Мn 3 O 4 .

3 МnО 2 = Мn 3 О 4 + O 2

Соединения марганца (III) практического значения не имеют,

Диоксид марганца МnО 2 или оксид марганца (IV), вещество темно - серого цвета. При нагревании на воздухе до 530 "С диоксид марганца разлагается, выделяя кислород, как показано выше. В вакууме или в присутствии восстановителя эта реакция протекает значительно интенсивнее.

При кипячении диоксида марганца с концентрированной азотной кислотой образуется соль марганца (II) и выделяется кислород:

2 МnО 2 + 4 НNО 3 = 2 Мn(NО 3) 2 + 2 Н 2 О + O 2

Диоксид марганца в кислой среде проявляет окислительные свойства:

МnО 2 + 4 НСl = МnСl 2 + Сl 2  + 2 Н 2 О

МnО 2 + 2 FеSO 4 + 2 Н 2 SO 4 = МnSO 4 + Fе 2 (SO 4) 3 + 3 Н 2 О

При сплавили оксида марганца (IV) со щелочами без доступа воздуха образуется манганит, или манганат (IV):

2 МnО 2 + 2 КОН = К 2 МnО 3 + Н 2 О

В присутствии кислорода воздуха, игравшего роль окислителя, при сплавлении образуется соль манганата (VI):

2 МпО 2 + 4 КОН + O 2 = 2 К 2 МnО 4 + 2 Н 2 О

Манганат калия К 2 МnO 4 самопроизвольно разлагается на перманганат калия и диоксид марганца:

3 К 2 МnО 4 + 2 Н 2 О = 2 КМnО 4 + МnО 2 + 4 КОН

Перманганат калия КМnO 4 широко применяется в лабораторной практике, промышленности, медицине и быту. Он является очень сильным окислителем. В зависимости от среды марганец в присутствии восстановителя может восстанавливаться до различной степени окисления. В кислой среде он всегда восстанавливается до Мn (II):

2 КМnО 4 +10 КВг + 8 Н 2 SO 4 = 2 МпSO 4 + 6 К 2 SO 4 + 5 Вr 2 + 8 Н 2 О

Аналогично ведут себя манганат калия К 2 МnО 4 и диоксид марганца.

В щелочной среде перманганат калия восстанавливается до манганата:

2 КМnО 4 + К 2 SO 3 + 2 КОН = К 2 SO 4 + 2 К 2 МnO 4 + Н 2 О

В нейтральной или слабощелочной среде перманганат калия восстанавливается до диоксида марганца:

2 КМnО 4 + С 6 Н 5 СН 3 = 2 КОН + 2 МnО 2 + С 6 Н 5 СООН

2 КМnО 4 + 3 МnSO 4 + 2 Н 2 О = 5 МnО 2 + К 2 SО 4 + 2 Н 2 SО 4

Последняя реакция используется в аналитической химии при количественном определении марганца.

Раньше перманганат калия получали окислением либо диоксида марганца, либо манганата калия. Диоксид марганца окисляли селитрой при сплавлении со щелочью:

МnО 2 + КNО 3 + 2 КОН = К 2 МпО 4 + КNО 2 + Н 2 О

Образовавшийся манганат калия в растворе самопроизвольно распадался на перманганат калия и диоксид марганца:

3 К 2 MnО 4 + 2 Н 2 О = 2 КМпО 4 + MnО 2 + 4 КОН

По второму способу манганат калия окисляли хлором:

2 К 2 МnО 4 + Сl 2 = 2 КМnО 4 + 2 КСl

В настоящее время перманганат калия получают электролитическим окислением манганата:

МnO 4 2   е  = МnO 4 

Перманганат калия широко применяется как в промышленности, так и в лабораторной практике. Его используют для отбелки хлопка, шерсти, прядильных волокон, осветления масел и окисления различных органических веществ. В лабораторной практике он применяется для получения хлора и кислорода:

2 КМnO 4 + 16 НСl = 2 КСl + 2 МnСl 2 + 5 Cl 2 + 8 Н 2 О

2 КМnО 4 = К 2 МnО 4 + МnО 2 + O ­2

В аналитической химии перманганат калия применяют для количественного определения веществ, обладающих восстановительными свойствами (Fе 2  , Sn 2  , АsО 3 3  , Н 2 О 2 , и др.). Этот метод анализа называется перманганатометрией.

Cl
3s 3p 3d
1s
2s 2p


Валентность в данном состоянии = VII

Таким образом, для хлора характерны валентности: I, III, V, VII

Аналогичные валентности и степени окисления характерны для Br и I.

Для F, в отличие от остальных галогенов, характерны только степени окисления -1, 0 и валентность I, так как у него самая высокая электроотрицательность среди всех элементов и нет свободных орбиталей на последнем уровне.

Физические свойства простых веществ:

В качестве простых веществ все галогены встречаются в виде молекул Э 2 (F 2 , Cl 2 , Br 2 , I 2). В молекуле атомы соединены ковалентной неполярной химической связью.

Образуют молекулярные кристаллические решетки.

Встречаемость в природе:

F 2 , Cl 2 , Br 2 , I 2 практически не встречаются из-за своей высокой химической активности.

В основном галогены в природе встречаются в составе солей:

NaCl – каменная соль (после очистки – поваренная соль)

KCl ∙ NaCl - сильвинит

KCl ∙ MgCl 2 - карналлит

Cl входит в состав хлорофилла растений.

Получение (на примере хлора):

1. В промышленности – электролизом раствора или расплава NaCl.

а). Расплав: 2NaCl → 2Na + Cl 2

на катоде: Na + +1e → Na 0

на аноде: 2Cl - - 2e → Cl 2 0

б). Раствор: 2NaCl + 2H 2 O → H 2 + Cl 2 + 2NaOH

на катоде: 2H 2 O + 2e → H 2 0 + 2OH -

на аноде: 2Cl - - 2e → Cl 2 0

2. В лаборатории – реакцией соляной кислоты с сильными окислителями:

а). MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O

б). 2KMnO 4(крист.) + 16HCl (конц.) = 5Cl 2 + 2MnCl 2 + 2KCl + 8H 2 O

в). KClO 3 + 6HCl (конц.) = 3Cl 2 + KCl + 3H 2 O

бертолетова соль

Химические свойства галогенов (на примере хлора):

Все галогены являются сильными окислителями!

1). Взаимодействие с простыми веществами:

а). С металлами:

2Na + Cl 2 = 2NaCl

2Fe + 3Cl 2 = 2FeCl 3

Cu + Cl 2 = CuCl 2

б). С неметаллами:

H 2 + Cl 2 = 2HCl (реакция идет на свету)

2P + 3Cl 2 = 2PCl 3 (реакция идет при нагревании)

хлорид фосфора (III)

2P + 5Cl 2 = 2PCl 5 (реакция идет при нагревании)

хлорид фосфора (V)

Si + 2Cl 2 = SiCl 4 (реакция идет при нагревании)

хлорид кремния (IV)

С азотом и кислородом хлор и другие галогены не взаимодействуют, так как и те, и другие в реакциях проявляют окислительные свойства, поэтому оксиды галогенов можно получить только косвенным путем.

2). Взаимодействие со сложными веществами:

а). С водой:

В направлении F 2 → Cl 2 → Br 2 → I 2 растворимость в воде падает.

Хлор растворим в воде, но плохо (2,5 объема в 1 объеме воды при 20ºС). Раствор хлора в воде называется «хлорная вода». При этом идет реакция:

Cl 2 + H 2 O = HCl + HClO (реакция диспропорционирования)

HClO → HCl +

атомарный кислород

За счет образования атомарного кислорода растворенный в воде хлор обладает высоким окисляющим, отбеливающим (в том числе обесцвечивает органические красители) и обеззараживающим действием.

Фтор не может иметь положительных степеней окисления, поэтому с водой не диспропорционирует:

2F 2 + 2H 2 O = 4HF + O 2

I 2 плохо растворим в воде и практически не взаимодействует с ней, но хорошо растворим в органических растворителях (спирте, хлороформе), а также KI. Раствор I 2 в KI называется «раствор Люголя».

б). С щелочами диспропорционируют:

на холоду: Cl 2 + 2KOH = KCl + KClO + H 2 O

при нагревании: 3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

в). С растворами солей галогеноводородных кислот (находящихся ниже по группе):

Cl 2 + 2NaBr = 2NaCl + Br 2

Cl 2 + 2NaI = 2NaCl + I 2

Но! F 2 + NaCl ≠ , так как F 2 в первую очередь взаимодействует с водой.

Подобным образом идут реакции с галогеноводородами: Cl 2 + 2HI = I 2 + 2HCl

Качественная реакция на I 2:

I 2 + крахмал = темно синее окрашивание

Образующееся соединение при нагревании разрушается и происходит обесцвечивание реакционной смеси. После охлаждения темно синяя окраска снова возвращается, так как соединение образуется заново.

Галогеноводороды

Получение (на примере HCl):

1. В промышленности – из простых веществ:

H 2 + Cl 2 = 2HCl

2. В лаборатории – из солей:

NaCl (крист.) + H 2 SO 4(конц.) = HCl + NaHSO 4 (аналогично HF)

Но: 2NaBr (тв.) + H 2 SO 4(конц.) = Br 2 + 2NaHSO 4 (аналогично HI, так как HBr и HI сильные восстановители)

Химические свойства (на примере HCl):

Галогеноводороды в обычных условиях мало реакционноспособны, зато их растворы в воде (кислоты) химически очень активны.

Соляная, бромоводородная и йодоводородная кислоты – сильные электролиты, а фтороводородная – слабый электролит.

Соляная кислота HCl – бесцветная жидкость, летучая, максимальная концентрация 35 – 39%, во влажном воздухе дымит.

1. Взаимодействие с металлами, стоящими в ряду напряжений до водорода!:

Fe + HCl = FeCl 2 + H 2

а). 2Na + 2H 2 O = 2NaOH + H 2

б). NaOH + HCl = NaCl + H 2 O

2. Взаимодействие с основными и амфотерными оксидами:

MgO + 2HCl = MgCl 2 + H 2 O

CuO + 2HCl = CuCl 2 + H 2 O (при нагревании)

ZnO + 2HCl = ZnCl 2 + H 2 O

3. Взаимодействие с основаниями и амфотерными гидроксидами:

NaOH + HCl = NaCl + H 2 O

Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O

4. Взаимодействие с солями (если образуется осадок, газ или слабый электролит):

Na 2 CO 3 + 2HCl = 2NaCl + CO 2 + H 2 O

FeS + 2HCl = FeCl 2 + H 2 S

Качественные реакции на хлорид-, бромид- и йодид-ионы:

а). NaCl + AgNO 3 = AgCl↓ + HNO 3

белый творожистый

Осадок растворяется в растворе аммиака:

AgCl + 2NH 4 OH = Cl + 2H 2 O

При добавлении кислоты снова выпадает белый творожистый осадок:

Cl + 2HNO 3 = AgCl↓ + 2NH 4 NO 3

б). NaBr + AgNO 3 = AgBr↓ + HNO 3 (осадок плохо растворим в аммиаке)

бледно-желтый осадок

в). NaI + AgNO 3 = AgI↓ + HNO 3 (осадок не растворим в аммиаке)

светло-желтый осадок

К VII А группы периодической системы Д.И. Менделеева входят Флуор 9F, Хлор 17Cl, Бром 35Br, иод 53И и Астат 85At (стабильных изотопов не имеет). F, Cl, Br, и носят название “галоґены” (в переводе с греческого – солероды). Это название обусловлено их свойством образовывать соли при непосредственном взаимодействии с металлами.
Электронная конфигурация внешнего слоя – ns2nр5. Изменение химических свойств в ряду F – Cl – Br – I – At обусловлено последовательным увеличением размеров ns-, nр-валентных орбиталей. С увеличением порядкового номера атома элемента возрастает плотность, увеличиваются температуры кипения и плавления, растет сила галогеноводневих кислот, уменьшается реакционная способность.
Галогены – типичные неметаллы, под действием восстановителей легко превращаются в галогенид-ионы Г. Родство атома к электрону уменьшается вниз по группе. Галогены энергично взаимодействуют с металлами, с s-металлами образуют ионные соединения. Ионный характер галогенидов несколько ослабляется с увеличением порядкового номера элемента является следствием уменьшения электроотрицательности. Более электроотрицательными элементами галогены проявляют положительные степени окисления.
Свойства фтора заметно отличаются от свойств других галогенов. У него отсутствуют вакантные d-орбитали, электроны 2s22р5 слабо экранированные от ядра, что приводит к высокой электронной плотности, энергии ионизации, электроотрицательности. Поэтому для фтора возможна только степень окисления -1, 0, а для других галогенов 1 (максимальная устойчивость соединений), 0, +1, +3, +5, +7, вероятны также +2, +4, +6). Энергия связи в молекуле F2 аномально мала, что делает ее очень реакционные (фтор непосредственно реагирует со всеми элементами, кроме НЕ, Nе, Аr, с образованием соединений, в которых элементы находятся в максимально возможных степенях окисления). Также следует отметить высокие по сравнению с другими галогенами, энтальпии образования ионных и ковалентных соединений.
2.2 Нахождение в природе

В земной коре содержание фтора составляет 6 · 10-2%, хлора, брома, йода соответственно 2 · 10-2; 2 · 10-4; 4 * 10-5%. Фтор встречается в виде фторид (около 30 минералов, наиболее важные – СаF2 (флюорит или плавиковый шпат), 3Ca3 (PO4) 2CaF2 (фторапатит), Na3 – криолит). Хлор образует около 70 собственных минералов, главным образом это хлориды легких металлов (каменная соль, галит NaCl; сильвин KCl, карналлит KCl MgCl2 6H2O и т.п.). Основная масса галогенов сконцентрирована в воде морей и океанов. Бром и йод также содержатся в буровых водах, морских водорослях (например, в морской капусте (ламинарии) содержание йода достигает 0,45%).
2.3 Физические свойства

В газообразном, жидком и твердом состоянии галогены – двухатомные молекулы Г2. Фтор – светло-желтый газ с очень неприятным резким запахом. Хлор – зелено-желтый газ с резким запахом, бром – красно-бурая тяжелая жидкость с резким запахом йод – черные, металлически блестящие кристаллы (при нагревании превращается в фиолетовый газ (сублимация) – рисунок 2.1. Температуры плавления и кипения монотонно увеличиваются от фтора к йоду с увеличением размера молекулы и усилением межмолекулярного взаимодействия.

а
бы
в
а – хлор; б – бром; в – йод
Рисунок 2.1 – Внешний вид хлора, брома, йода

2.4 Методы извлечения

Фтор получают электролизом расплавов фторид (преимущественно КНF2, что позволяет проводить электролиз при 1000С, тогда как КF плавится при температуре 8570С.
Промышленное производство хлора основывается на электролизе водных растворов NаСl. В лабораторных условиях его получают взаимодействием концентрированной HCl с окислителями:
MnO2 + 4HCl → MnCl2 + Cl2 + 2H2O
2KMnO4 + 16HCl → 2MnCl2 + 2KCl + 5Cl2 + 8H2O
Особенно чистый хлор получают по реакции:
2AuCl3 → 2Au + 3Cl2
Бром в промышленности получают из морской воды, предварительно избавившись NаСl: 2Br – + Cl2 → Br2 + 2Cl-
Бром выдувают потоком воздуха и поглощают железными стружками или другими веществами, например:
Na2CO3 + Br2 → NaBrO + NaBr + CO2
NaBrO + NaBr + H2SO4 → Br2 + Na2SO4 + H2O
В лабораторных условиях бром получают по реакции:
2KBr + Cl2 → 2KCl + Br2
Йод в промышленности также добывают из морской воды, воды нефтяных скважин, золы морских растений:
2NaI + Cl2 → 2NaCl + I2
В лаборатории йод получают по реакции:
2NaI + MnO2 + 2H2SO4 → I2 + MnSO4 + Na2SO4 + 2H2O
Йод адсорбируют активированным углем или экстрагируют растворителями, очищают – сублимацией.
2.5 Химические свойства элементов VII А группы

По химическим свойствам галогены – активные неметаллы. Благодаря низкой энергии диссоциации молекулы фтора, самой электроотрицательности атома и высокой энергии гидратации иона, фтор – сильнейший окислитель (окисляет другие элементы в высшие положительных степеней окисления), энергично реагирует с простыми веществами за исключением Hе, Е и А r. В ряду от фтора к йоду окислительные свойства уменьшаются, а восстановительные – увеличиваются.

Взаимодействие с водой:
С водой фтор взаимодействует чрезвычайно энергично:
2F2 + 2H2O → 4HF + O2,
Реакция сопровождается образованием озона и ОF2.
При растворении хлора в воде происходит реакция:
H2O + Сl2 HOСl + HСl – при комнатной температуре в насыщенном растворе Сl2 в воде примерно 70% хлора находится в виде молекул, тогда как равновесие для йода почти полностью смещена влево.
Взаимодействие со сложными веществами:
Фтор реагирует со щелочами с образованием ОF2:

При действии хлора на холодные растворы щелочей образуются соли хлорноватистой кислоты:
Сl2 + 2KOH → KOСl + KСl + H2O
калия гипохлорит
При воздействии на горячий раствор щелочи (70-800С) образуются соли хлорноватой кислоты – хлораты:
3Сl2 + 6KOH → KСlО3 + 5KСl + 3H2O
калия хлотрат
Йод и бром также преимущественно образуют при взаимодействии с щелочами триоксогалогенаты.
Хлор реагирует с раствором соды:
2Na2CO3 + Cl2 + H2O → NaClO + NaCl + 2NaHCO3
“Жавелевая вода”
Йод в незначительной степени проявляет свойства, характерные для металлов. Так можно получить йод нитрат, который разлагается при температуре ниже 0 ° С.
I2 + AgNO3 AgI + INO3; 3INO3 → I2 + I (NO3) 3
2.6 Соединения галогенов

Галогеноводородов
При стандартных условиях галогеноводороды – бесцветные газы с резким запахом. С ростом массы и размера молекул усиливается межмолекулярное взаимодействие, и, как следствие, повышаются температуры плавления и кипения. Фтороводорода имеет аномально высокие температуры плавления (-83 ° С) и кипения (-19,5 ° С), что объясняется образованием водородных связей между молекулами НF.
Благодаря высокой полярности галогеноводороды хорошо растворяются в воде с образованием кислот, сила которых увеличивается в ряду НF-НСl-НВr-НЕ (вследствие увеличения радиуса). Восстановительная активность галоґенид ионов в ряду F- → СИ- → Br- → I- также увеличивается. НЕТ – сильный восстановитель, применяется в органическом синтезе. На воздухе водный раствор НЕТ постепенно окисляется кислородом воздуха:
4HI + O2 → 2I2 + 2H2O
Аналогично ведет себя и НВr. Плавиковая (НF) и соляная кислота (НСl) не реагируют с концентрированной серной кислотой, а НВr и НЕТ окисляются ней.
Основное количество соляной кислоты получают при хлорировании, дехлорирования органических соединений, пиролизе (расписание при нагревании без доступа воздуха) хлорорганических отходов – побочных продуктов различных процессов. Кроме того, галогеноводороды получают:
прямым синтезом из элементов: Н2 + Г2 2НГ
Эта цепная реакция, которая тоже лежит в основе промышленного получения HCl, инициируется светом, влагой, твердыми пористыми веществами.
вытеснением НГ с их солей (лабораторные методы добычи):
CaF2 + H2SO4 → CaSO4 ↓ + 2HF;
NaCl + H2SO4 (к) → NaHSO4 + HCl;
NaHSO4 + NaCl → Na2SO4 + HCl.
– Кислоты НВr, ни получают гидролизом галоґенидив фосфора:
PЕ3 + 3H2O → H3PO3 + 3HЕ (Е – Br или I).
Особенностью НF и его водных растворов является разрушение кварца и стекла:
SiO2 + 4HF → SiF4 + 2H2O
SiF4 + 2HF → H2
Поэтому HF хранят в полиэтиленовой посуде или стеклянной, но покрытом внутри воском или парафином. Редкий НF – сильно ионизирующего растворитель. С водой смешивается в любых соотношениях. В разбавленных водных растворах существует равновесие:
HF + H2O H3O + + F-;
F- + HF HF2-;
При нейтрализации НF можно получить калий бифторид (калий гидроґенфторид):
2HF + KOH → KHF2 + H2O
KHF2 + KOH → 2KF + H2O
Фториды (соли плавиковой кислоты) – малорастворимые в воде (исключение – NaF, KF, NH4F, AgF, SnF2), их разделяют, аналогично оксидам, на кислотные (SiF4), основные (NaF) и амфотерные (AlF3). Могут реагировать между собой:
2NaF + SiF4 → Na2
KF + SbF5 → K
3KF + AlF3 → K3
Хлориды – соли соляной кислоты – растворяются в воде, за исключением АgСl, НgСl2, Hg2Cl2, РbСl2.
Бромиды, йодиды – растворяются в воде, за исключением АgВr, АgI, РbI2, РbВr2.
Соединения галогенов С кислорода
Бинарные оксигенвмисних соединения фтора называются фторид (Флуор более электроотрицательным чем кислород). Стойким при обычных условиях является оксиґен дифлуорид – ОF2, который образуется по реакции:
2NaOH + 2F2 → 2NaF + OF2 + H2O
ОF2 – светло-желтый газ, реакционно активный, сильный окислитель:
2H2 + OF2 → H2O + 2HF.
Другие галогены в соединениях с кислорода проявляют положительные степени окисления.
Среди оксидов практическое значение имеет И2О5 (единственный термодинамически устойчив оксид галогенидов) – бесцветное кристаллическое вещество. Окислитель средней силы, применяется для количественного определения СО:
I2O5 + 5CO → I2 + 5CO2
I2 + 2Na2S2O3 → 2NaI + Na2S4O6
Оксиґеновмисни соединения хлора получают косвенным путем. Сравнительно стабильными являются Сl2О, ClO2, Cl2O7:
Сl2O – темно-желтый газ с резким запахом, ядовит, неустойчивый, может взрываться. Получают этот оксид по реакции: 2HgO + 2Cl2 → HgCl2 + Cl2O.
Cl2O реагирует с водой: Cl2O + H2O → 2HOCl или 2НСl – хлорноватистая кислота. Эта кислота является неустойчивой, существует только в разбавленном растворе.
НОСl и ее соли гипохлориты – сильные окислители:
NaOCl + 2KI + H2SO4 → I2 + NaCl + K2SO4 + H2O
ClO2 – газ зеленовато-желтого цвета, с резким запахом, ядовит, при нагревании может взрываться, энергичный окислитель.
ClO2, единственный из оксидов галогенов, который получают в промышленных масштабах за реакциями:
КClO3 + H2SO4 → HClO3 + KHSO4
3HClO3 → 2ClO2 + HClO4 + H2O
В воде СlО2 диспропорционирует, как и в растворах щелочей:
2СlО2 + H2O → HClO3 + HClО2
хлорноватая кислота хлоритна кислота
2ClO2 + 2KOH → KClO3 + KClO2 + H2O
Сl2О7 – маслянистая жидкость, взрывается при нагревании до 120 ° С, получают по реакции: 4HClO4 + Р4О10 → 2Cl2O7 + 4НРО3.
Cl2O7 реагирует с водой: Cl2O7 + H2O → 2HClO4

Гипогалогенитни кислоты НПО известны только в разбавленных водных растворах. Их получают взаимодействием галогена с суспензией ртути оксида:
2I2 + HgO + H2O → HgI2 + 2HOI.
Это слабые кислоты, в ряду HOCl → HOBr → HOI уменьшается сила кислот, основные свойства увеличиваются. HOI уже амфотерна соединение.
Гипогалогениты – неустойчивые соединения с сильными окислительными свойствами, получают при взаимодействии Г2 с охлажденным раствором щелочи. Таким образом получают в промышленности хлорная известь, долгое время широко применялось в качестве дезинфицирующего и отбеливающего средства:

С оксигеновмисних кислот галогенов НГО2 известна только хлористая кислота HClO2, в свободном состоянии неустойчива кислота средней силы (Кд = 10-2). Технического значения она не имеет. Практическое значение имеет NaClO2 – сильный окислитель, применяется как отбеливающее средство для тканей, в небольшом количестве (около 0,4%) входит в стирального порошка. Получают по реакции:
Na2O2 + 2ClO2 → O2 + 2NaClO2
Оксокислоты НГО3 более устойчивыми, чем НГО. HClO3, HВrO3 существуют только в растворах, концентрация которых не превышает 50%, а HIO3 выделена как индивидуальная соединение.
В ряду HClO3 → HBrO3 → HIO3 сила кислот снижается, они более слабыми окислителями, чем НОГ.
HClO3 получают в процессе реакций:
6Ba (OH) 2 + 6Cl2 → 5BaCl2 + Ba (ClO3) 2 + 6H2O
Ba (ClO3) 2 + H2SO4 → BaSO4 ↓ + 2HClO3
HBrO3 получают по реакции:
Br2 + 5Cl2 + 6H2O → 2HBrO3 + 10HCl
HIO3 можно получить:
3I2 + 10HNO3 → 6HIO3 + 10NO + 2H2O
Соли этих кислот, сильные окислители, получают по реакции:
3Г2 + 6КОН → КЕО3 + 5ке + 3Н2О
Широкое использование в промышленности имеет KClO3 – бертолетовая соль – применяется в изготовлении спичек, фейерверкив, взрывчатых веществ.
Оксокислоты НГО4
НСlО4 – жидкость, дымит на воздухе. Ее получают в ходе реакции:
KClO4 + H2SO4 → HClO4 + KHSO4
Безводная НСlО4 – очень сильный окислитель, одна из самых сильных кислот, которая применяется в неорганическом и органическом синтезе. Соли – перхлораты, большинство которых растворяется в воде, за исключением КСlО4, RbClO4, CsClO4, Mg (ClO4) 2 (техническое название “Ангидрон») – один из самых сильных осушителей.
Бромная кислота известна только в водных растворах.
Перйодатная кислота H5IO6 – слабая кислота, хорошо растворимый в воде, образует средние и кислые соли. Кислоту получают по реакции:
Ba5 (IO6) 2 + 5H2SO4 → 5BaSO4 + 2H5IO6.
Соли Перйодатная кислоты можно получить:
KIO3 + Cl2 + 6KOH → K5IO6 + 2KCl + 3H2O
Межгалогенные СОЕДИНЕНИЯ
В отличие от элементов других групп галогены взаимодействуют друг с другом с образованием большого количества интергалогенидив с общей формулой ХYn (n = 1, 3, 5,7) – таблица 2.3, где Y – более легкий и электроотрицательным галоген. Получают их непосредственным взаимодействием простых веществ, при различных соотношений реагентов, температур и давлений.
Все интергалогениды, кроме ВrСl, разлагаются под действием воды. Имеют сильные окисювальни свойства.
2.7 Использование

Галогены и их соединения широко применяются в промышленности, сельском хозяйстве, быту. По масштабам промышленного производства первое место среди галогенов занимает хлор, второе – фтор. Основные сферы применения галогенов и их соединений приведены в таблице 2.4
Кроме того, оксигенвмисних соединения галогенов применяют в пиротехнике. Соединения фтора используются для производства глазури и эмали; HF – для травления стекла. Хлорсодержащие соединения широко применяют в качестве боевых отравляющих веществ (фосген, иприт, хлорпикрин и т.д.). АgВr используют в фотографии, КВr – в оптике. Йод и бром применяют в галогенных лампах. Распиловка в облаках аэрозолей АgI i PbI2 вызывает (искусственно) дождь, является средством борьбы с градом. Некоторые йодорганични соединения используются для производства сверхмощных газовых лазеров.
2.8 Биологическая роль и токсикология

Фтор и его соединения чрезвычайно ядовиты. F2 имеет раздражающее действие, в несколько раз более чем НF. Попадая на кожу, НF растворяет белки, глубоко проникает в ткани, вызывает тяжелые язвы. Фтор в составе фторапатита входит в состав зубной эмали, его дефицит вызывает кариес, а избыток – повышение ломкости костей.
Хлор относится к группе удушливых веществ, вызывает сильное раздражение слизистых оболочек, может привести к отеку легких. Высокие концентрации приводят к рефлекторного торможения дыхательного центра. Хлор – важнейший биогенный элемент. Хлорид-ионы входят в состав желудочного сока, участвуют в различных внутриклеточных процессах – поддержании осмотического давления и регуляции водно-солевого обмена.
Пары брома также приводят к раздражению слизистых оболочек, головокружение, а более высокие концентрации вызывают спазмы дыхательных путей поражения обонятельного нерва. При попадании жидкого брома на кожу образуются очень болезненные ожоги и язвы, трудно загаюються. Соединения брома регулируют процессы возбуждения и торможение центральной нервной системы.
Вдыхание паров йода вызывает поражение почек и сердечно-сосудистой системы, дыхательных путей, возможен отек легких. При попадании на слизистую глаз появляется боль в глазах, покраснение, слезоточивость. Йод входит в состав тиреоидных гормонов щитовидной железы (тироксин, трийодтиронин), которые играют очень важную роль в обмене веществ.

1. Какие степени окисления проявляют галогены в соединениях? Какие особенности валентных состояний фтора? Почему металлы проявляют высшие степени окисления в соединениях с фтора?
2. Проанализируйте изменения свойств в ряду галогенов.
3. Проиллюстрируйте реакциями промышленные и лабораторные способы получения галогенов.
4. Приведите сравнительную характеристику окислительно-восстановительных свойств галогенов на примере различных реакций.
5. Как изменяются физические и химические свойства в ряду НF-НСl-НВr-НЕТ?
6. Напишите уравнения реакций взаимодействия галогенов с водой и щелочами.
7. Как изменяются сила и окислительно-восстановительные свойства оксигенвмисних кислот галогенов? Ответ аргументируйте.
8. Какие неорганические соединения фтора, хлора, брома и йода используются в медицине? В каких еще отраслях широко используются галогены и их соединения?
9. Напишите уравнения реакций, с помощью которых можно осуществить превращения:
РbВr2 → HBr → Br2 → КBrO3 → НBrO3 → FeBr3;
Сl2 → КClO3 → КClО4 → НClО4 → ClO2 → НClO3;
Сl2 → НCl → КCl → Cl2 → ВаCl2 → НCl.
10. Какую биологическую роль в организме человека играют галогены?