Подвижная опора ограничивает перемещение тела. Теоретическая механика статика

Тело, перемещению которого в пространстве препятствует какие-нибудь другие тела, скрепленные или соприкасающиеся с данным, называется несвободным. Все то, что ограничивает перемещение данного тела в пространстве, называется связями.

Пример. Груз висит на веревке, ящик стоит на полу и т.д.

Сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Силы, приложенные к телу, но не являющиеся реакциями, называются активными.

Направление силы реакции связи противоположно той, куда связь не дает перемещаться телу.

Направления реакций некоторых основных видов связи

1. Гладкая поверхность

Реакция связиN гладкой поверхности или опоры направлена по нормали к поверхностям соприкасающихся тел в точке касания и приложена в этой точке.

Если одна из соприкасающихся поверхностей является точкой, то реакция направлена по нормали к другой поверхности (рис. 1.5).

2. Нить, стержень.

Р
еакция Т натянутой нити и нагруженного стержняS направлена вдоль этих связей и приложена в точке контакта (рис. 1.6).

3. Цилиндрический шарнир (подшипник, петля).

РеакцияR цилиндрического шарнира лежит в плоскости, перпендикулярной оси шарнира, и может иметь любое направление в этой плоскости. Для определения R ее раскладывают на два взаимноперпендикулярных направления: R x и R y (рис. 1.7).

4. Подвижная шарнирная опора.

Реакция связиR направлена перпендикулярно плоскости возможного перемещения шарнира (рис. 1.8).

5. Шаровый шарнир и подпятник (рис. 1.9, рис. 1.10).

Р
еакция шарового шарнира и подпятника может иметь любое направление в пространстве.

Аксиома связей. Всякое несвободное тело можно рассматривать как свободное, если отбросить связи и заменить их действие реакциями этих связей (рис. 1.11).

Сложение сил

Геометрический способ сложения сил

Величина, равная геометрической сумме сил какой-либо системы называется главным вектором этой системы сил.

Пусть на твердое тело действует плоская система сил (F 1 , F 2 , F 3 , …, F n) (рис. 1.12).

Из произвольно выбранной точки О откладывается векторF 1 , из его конца откладывается вектор F 2 и т.д. Вектор R, замыкающий силовой многоугольник, является результирующим:

Сложение двух сил

Пусть на тело действуют две силы, лежащие в одной плоскости (рис. 1.13).

Результирующая сила определяется по правилу параллелограмма, модуль силы определяется по теореме косинусов или синусов:

;
.

Сложение трех сил не лежащих в одной плоскости

Рассмотрим три силы,,не лежащие в одной плоскости (рис. 1.14). Результирующая силаравна:

.

Направление силы определим по направляющим косинусам:

;
;
.

Разложение сил

Разложение сил по двум заданным направлениям

Пусть надо силуF разложить по направлениям AB и AD (рис. 1.15).

.

Задача сводится к построению параллелограмма, у которого стороны расположены по направлениям AB и AD и данная сила F является диагональю. Тогда стороны параллелограмма будут искомыми силами.

Разложение сил по трем заданным направлениям.

Пусть направления силы не лежат в одной плоскости. Тогда задача сводится к построению параллелепипеда, у которого диагональю является данная сила, а ребра параллельны заданным направлениям (рис. 1.16).

.

Вопросы для самоконтроля

    Что изучает статика?

    Что такое абсолютно твердое тело?

    Основные виды связей и их реакции?

    Геометрическое сложение сил?

Литература: , , .

Лекция 2.

Действия над силами. Система сходящихся сил

Проекция силы на ось и на плоскость

Проекция силы на ось. Пусть сила F образует с осью OX угол  (рис. 2.1), тогда проекция этой силы на ось будет:

Проекция силы на ось есть величина скалярная.

Проекция силы на плоскость. Проекцией силы F на плоскость OXY называется вектор F xy = OB 1 , заключенный между проекциями начала и конца силы F на эту плоскость (рис. 2.2.)

Проекция силы на плоскость есть величина векторная, так как она кроме численного значения характеризуется направлением на плоскости. По модулюF xy = Fcos, где  - угол между направлением силы F и ее проекцией F xy .

Аналитический способ задания сил . Для аналитического способа задания силы необходимо выбрать систему координат OXYZ и спроектировать силу на оси координат (рис. 2.3).

Направляющие косинусы определяются по формулам:


;
;
.

Для плоской системы сил:

;
;
;
.

F 1 F

А F 2 r A О

Очевидно, что перенос точки приложения силы вдоль ее линии действия не может изменить главного вектора системы, так как при этой операции вектор каждой силы остается неизменным. Главный момент также не изменится, так как момент силы не зависит от положения точки приложения силы на ее линии действия.

Рассмотрим теперь вторую операцию. Пусть в точке А приложены две силы F 1 и F 2 (рис.16) Заменим их одной силой F , найденной по правилу параллелограмма:

F = F1 + F2 .

Найдем момент силы F относительно точки О .

m O (F ) = r A ×F = r A ×(F 1 + F 2 ) = r A ×F 1 +r A ×F 2 = m O (F 1 ) +m O (F 2 ).

Таким образом, применение этой элементарной операции приводит к замене в выражениях главного вектора и главного момента двух слагаемых их геометрической суммой. Очевидно, что главный вектор и главный момент при этом не изменяются.

4. ВИДЫ СВЯЗЕЙ И ИХ РЕАКЦИИ.

4.1. Гладкая поверхность . Гладкой считается поверхность, трением о которую можно пренебречь. Гладкое тело, опирающееся на гладкую поверхность, может скользить вдоль этой поверхности и не может перемещаться по нормали к ней.

Реакция гладкой поверхности направлена по общей нормали к соприкасающимся поверхностям тела и опоры и приложена в точке их контакта (рис.17). В случае шероховатых поверхностей трение можно исключить при

помощи катков (рис.18), соединенных с телом и устанавливаемых на опорную плоскость. Реакция катков направлена по нормали к опорной плоскости.

4.2 Точечная опора (острие, гладкий выступ).Реакция точечной опоры направлена по нормали к поверхности тела (рис.19).

4.3. Нить , на которой подвешено тело (рис. 20), не дает ему удаляться от точки

ТА

ТВ

подвеса. Реакция направлена вдоль нити от точки ее закрепления на данном теле.

4.4. Цилиндрический шарнир состоит из болта и надетой на него втулки. Такое закрепление допускает перемещение вдоль оси шарнира и вращение вокруг нее. Реакция шарнира приложена в точке контакта болта и втулки и направлена по общей нормали к соприкасающимся поверхностям. Положение точки контакта зависит от приложенных к телу активных сил, поэтому направление реакции шарнира заранее неизвестно (рис.21), и ее раскладывают на две взаимно-перпендикулярные составляющие, параллельные координатным осям (рис.22).

4.5. Подшипник – опора вала, допускающая его вращение вокруг своей оси и перемещение вдоль этой оси. Реакция подшипника лежит в плоскости, перпендикулярной оси вала и раскладывается на две взаимно-перпендикулярные составляющие (рис.23).

4.6. Подпятник представляет собой опору вала, позволяющую ему перемещаться только в одном направлении вдоль оси вала и поворачиваться вокруг нее. Реакция подпятника (рис.24) раскладывается на три взаимноперпендикулярные составляющие.

4.7. Реакция тонкого невесомого стержня, шарнирно

соединенного концами с телом и опорой, направлена вдоль

стержня (рис. 25). Это следует из того, что опорный стержень

находится в равновесии под действием двух приложенных в

шарнирах сил, а в этом случае на основании аксиомы 1 силы

направлены вдоль прямой, соединяющей точки их приложения.

Жесткая заделка . При таком закреплении балки (рис.26) исключается

УА

ее поворот, горизонтальные и вертикальные перемещения,

поэтому реакция такой связи состоит

из пары сил с

A ХА

МА

моментом М A , препятствующей повороту

балки, и двух

взаимно-перпендикулярных сил X A , У А .

5. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ДВУМ СИЛАМ. УСЛОВИЯ РАВНОВЕСИЯ СИСТЕМЫ СИЛ.

5.1. Теорема. Произвольную систему сил при помощи элементарных операций можно преобразовать в эквивалентную систему, состоящую из двух сил; при этом главный вектор и главный момент системы не изменятся.

Доказательство. Докажем эту теорему для системы, состоящей из трех сил. Пусть к твердому телу в точках А, В и С приложены силы F 1 , F 2 и F 3 (рис.27).

F 3 11

F3 1

F2 1

F3 1

F 2 11

F2 1

F 2 11

Будем считать, что эти силы не лежат в одной плоскости. Проведем через точку А и силуF 2 плоскость П, а через точку А и силу F 3 - плоскость Н. Выберем на линии

пересечения этих плоскостей произвольную точку D. Соединим точки А и D с точками В и С. Разложим силуF 2 на две составляющие F 2 1 иF 2 11 , направленные по прямым АВ и ВD и перенесем эти составляющие по линиям их действия в точки

А и D.

Разложим силу

F 3 1 и

DС и

F 3 на составляющие

и перенесем эти составляющие вдоль их линий действия в точки А

и D .

F 2 1 и

F 3 1 , приложенные в точке D , заменим, используя правило

параллелограмма, одной силой

P 2 , приложенной в той же точке.

F 2 11 и

F 3 11 , приложенные в точке А , заменим, используя дважды

параллелограмма, одной силой Р 1 . Таким образом, исходная система сил{ F 1 , F 2 , F 3 } оказалась замененной системой { P 1 , P 2 } . Так как при этом применялись только элементарные операции, то системы { P 1 , P 2 } и { F 1 , F 2 , F 3 } оказались эквивалентными, и, следовательно, их главные векторы и главные моменты не изменились:

R F = R P , MO F = MO P .

Если плоскости П и Н сливаются, то точку D можно брать где угодно в этих плоскостях.

Теорема доказана для системы, состоящей из трех сил. Если система состоит из большего числа сил, то, повторяя эту операцию несколько раз, приведем к двум силам и любую заданную систему сил.

Операция замены системы сил эквивалентной системой, состоящей из двух сил, называется приведением данной системы сил к двум силам.

5.2.Теорема о равновесии системы сил. Для равновесия произвольной системы сил необходимо и достаточно, чтобы главный вектор и главный момент относительно любого центра равнялись нулю.

Доказательство необходимости. Пусть система сил{ F 1 , F 2 ,..., F n } ∞ 0 .

Докажем, что главный вектор системы равен нулю и главный момент относительно любого центра также равен нулю:

F = 0,

эквивалентной системой

двух сил {

P 2 } .

F n } ∞ {

} ∞ 0.

F 2 ,...,

} ∞ 0 , то на основании

первой аксиомы заключаем, что силы

по модулю и направлены по одной прямой в противоположные стороны (рис.28). Главный вектор R P = P 1 + P 2 = 0 .

Главный момент системы M O P = r A × P 1 + r B × P 2 = (r A − r B ) × P 1 = ВA × P 1 = 0 векторы BА и P 1 направлены по одной прямой.

А P 1

Следовательно,

будут равны нулю главный вектор и главный момент системы

} , т.е.

F = 0,

F = 0.

Доказательство достаточности. Пусть главный вектор и главный момент

системы {

} равны нулю:

F = 0;

0 . (рис.28).

F n } ∞ 0 .

Докажем, что система находится в равновесии: {

F 1 ,

F 2 ,...,

Преобразуем

F n } в

эквивалентную систему двух сил

F 1 ,

F 2 ,...,

}∞

Следовательно,

Определим главный момент системы { P 1 , P 2 } относительно точки О:

Связи и их реакции

По определению, тело, которое не скреплено с другими телами и может совершать из данного положе­ния любые перемещения в пространстве, называется свободным (например, воздушный шар в воздухе). Тело, перемещениям которого в пространстве препятствуют какие-нибудь другие, скрепленные или соприкасающиеся с ним тела, называется несвободным . Все то, что ограничивает перемещения данного тела в пространстве, будем называть связью.

Например, тело лежащее на столе – несвободное тело. Связью его является плоскость стола, которая препятствует перемещению тела вниз.

Очень важен так называемый принцип освобождаемости , которым будем пользоваться в дальнейшем. Записывается он так.

Любое несвободное тело можно сделать свободным, если связи убрать, а действие их на тело заменить силами, такими, чтобы тело оставалось в равновесии.

Сила, с которой данная связь действует на тело, препятствуя тем ила иным его перемещениям, называется силой реакции (противодействия) связи или просто реакцией связи.

Так у тела, лежащего на столе, связь – стол. Тело несвободное. Сделаем его свободным – стол уберем, а чтобы тело осталось в равнове­сии, заменим стол силой, направленной вверх и равной, конечно, весу тела.

Направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу. Когда связь одновременно препятствует перемещениям тела по нескольким направлениям, направление реакции связи также наперед неизвестно и должно определяться в результате решения рассматриваемой задачи.

Рассмотрим, как направлены реакции некоторых основных видов связей.

1. Гладкая плоскость (поверхность) или опора. Гладкой будем называть поверхность, трением о которую данного тела можно в первом приближении пренебречь. Такая поверхность не дает телу перемещаться только по направлению общего перпен­дикуляра (нормали) к поверхностям соприкасающихся тел в точке их касания (рис.14,а ). Поэтому реакция N гладкой поверхности или опоры направлена по общей нормали к поверхностям сопри­касающихся тел в точке их касания и приложена в этой точке. Когда одна из соприкасающихся поверхностей является точкой (рис. 14,б ), то реакция направлена по нормали к другой поверх­ности.

Если поверхности не гладкие, надо добавить еще одну силу – силу трения , которая направлена перпендикулярно нормальной реакциив сторону, противоположную возможному скольжению тела.

Рис.14 Рис.15

Рис.16

2. Нить. Связь, осуществленная в виде гибкой нерастяжимой нити (рис.15), не дает телу М удаляться от точки подвеса нити по направлению AM . Поэтому реакция Т натянутой нити направлена вдоль нити от тела к точке ее подвеса. Если даже заранее можно догадаться, что реакция направлена к телу, все равно ее надо направить от тела. Таково правило. Оно избавляет от лишних и ненужных предположений и, как убедимся далее, помогает установить сжат стержень или растянут.

3. Цилиндрический шарнир (подшипник). Если два тела соединены болтом, проходящим через отверстия в этих телах, то такое соединение называется шарнирным или просто шарниром; осевая линия болта называется осью шарнира. Тело АВ , прикреплен­ное шарниром к опоре D (рис.16,а ), может поворачиваться как угодно вокруг оси шарнира (в плоскости чертежа); при этом конец А тела не может переместиться ни по какому направлению, перпен­дикулярному к оси шарнира. Поэтому реакция R цилиндрического шарнира может иметь любое направление в плоскости, перпен­дикулярной к оси шарнира, т.е. в плоскости А ху. Для силы R в этом случае наперед не известны ни ее модуль R , ни направле­ние (угол ).

4. Шаровой шарнир и подпятник. Этот вид связи закреп­ляет какую-нибудь точку тела так, что она не может совершать никаких перемещений в пространстве. При­мерами таких связей служат шаровая пята, с помощью которой прикрепляется фото­аппарат к штативу (рис.16,б ) и подшипник с упором (подпятник) (рис. 16,в ). Реакция R шарового шарнира или подпятника может иметь любое направление в пространстве. Для нее наперед неизвестны ни модуль реакции R , ни углы, образуемые ею с осями х, у, z .

Рис.17

5. Стержень. Пусть в какой-нибудь конструкции связью является стержень АВ , закрепленный на концах шарнирами (рис.17). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пре­небречь. Тогда на стержень будут действовать только две силы при­ложенные в шарнирах А и В . Но если стержень АВ находится в равновесии, то по аксиоме 1 приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом ко­торого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

6. Подвижная шарнирная опора (рис.18, опора А ) препятствует движению тела только в направ­лении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.

7. Неподвижная шарнирная опора (рис.18, опора В ). Реакциятакой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющимиипо направлениям осей координат. Если мы, решив задачу, найдеми, то тем самым будет определена и реакция; по модулю

Рис.18

Способ закрепления, показанный на рис.18, употребляется для того, чтобы в балке АВ не возникало дополнительных напряжений при изменении ее длины от изменения температуры или от изгиба.

Заметим, что если опору А балки (рис.18) сделать тоже непо­движной, то балка при действии на нее любой плоской системы сил будет статически неопределимой, так как тогда в три уравнения равновесия вой­дут четыре неизвестные реакции ,,,.

8. Неподвижная защемляющая опора или жесткая заделка (рис.19). В этом случае на заделанный конец балки со стороны опорных плоско­стей действует система распределенных сил реакций. Считая эти силы приведен­ными к центру А , мы можем их заменить одной наперед неизвестной силой , приложенной в этом центре, и парой с наперед неизвестным моментом . Силу можно в свою очередь изобразить ее составляющими и. Таким образом, для нахождения реакции неподвижной защемляющей опоры надо определить три неизвестных величины,и.Если под такую балку где-нибудь в точке В подвести еще одну опору, то балка станет статически неопределимой.

Рис.19

При определении реакций связи других конструкций надо установить, разре­шает ли она двигаться вдоль трех взаимно перпендикулярных осей и вращаться вокруг этих осей. Если препятствует какому-либо движению – показать соот­ветствующую силу, если препятствует вращению – пару с соответствующим моментом.

Иногда приходится исследовать равновесие нетвердых тел. При этом будем пользоваться предположением, что если это нетвердое тело находится в равновесии под действием сил, то его можно рассматривать как твердое тело, используя все правила и методы статики.

При решении задач по статике, относящихся к равновесию твердого тела, почти всегда рассматриваемое тело является несвободным. Условия, стесняющие свободу движения рассматриваемого тела, называются в механике связями. В статике связи осуществляются при помощи твердых или гибких тел, соединенных с данным твердым телом или касающихся его. Обычно задача состоит в определении сил взаимодействия между данным твердым телом и телами, осуществляющими связи, наложенные на это тело. Сила, с которой связь, препятствующая перемещению данного твердого тела в каком-нибудь направлении, действует на это тело, называется реакцией связи. Направление реакции связи противоположно тому направлению, в котором связь препятствует перемещению данного тела.

Основные типы связей

Основные типы связей показаны на рис. 16.

1. Тело опирается на абсолютно твердую гладкую неподвижную поверхность в точке А. Реакция N такой поверхности направлена по общей нормали к поверхности данного тела и к опорной поверхности в точке А соприкосновения тела с опорой.

2. Тело опирается на неподвижную точку или на неподвижную линию. Если трением пренебречь, то в этом случае реакция связи N приложена к телу в точке соприкосновения его с опорой и направлена по нормали к поверхности тела в этой точке.

3. Тело опирается одной точкой на гладкую неподвижную поверхность. Реакция связи N в этом случае приложена в точке соприкосновения тела с поверхностью и направлена по нормали к этой поверхности.

4. Связь осуществляется гибкой, нерастяжимой нитью (цепью, или канатом). Реакция этой связи приложена в точке прикрепления нити к телу и направлена вдоль нити. При этом следует отметить, что нить может быть только растянута. Поэтому реакция нити может быть направлена вдоль нити только в одну сторону, а именно от точки закрепления нити на данном теле к другому закрепленному концу нити.

5. Тело опирается на гладкую неподвижную плоскость катками, которые могут перемещаться по этой плоскости. Реакция такой опоры направлена перпендикулярно к плоскости, по которой могут перемещаться катки.

6. Связь осуществляется при помощи неподвижного цилиндрического шарнира. В этом случае рассматриваемое тело может только вращаться вокруг неподвижной оси цилиндрического шарнира. Если трением в шарнире пренебречь, то реакция неподвижного цилиндрического шарнира направлена по нормали к его цилиндрической поверхности, т. е. лежит в плоскости, перпендикулярной к оси шарнира, и пересекает эту ось. Но направление реакции шарнира в этой плоскости заранее неизвестно; это направление приходится определять в каждом отдельном случае, т. е. в каждой конкретной задаче.

7. Связь осуществляется при помощи невесомого твердого стержня, шарнирно соединенного концами с данным телом, равновесие которого мы рассматриваем, и с другим каким-нибудь телом, например со стойкой, стеной или полом; причем никакие заданные силы к этому стержню не приложены (его весом пренебрегаем). Реакция RB такого стержня, приложенная к данному телу, направлена вдоль стержня. При этом стержень может подвергаться как сжатию, так и растяжению.

(см. оригинал)

8. а) Связь осуществляется при помощи подпятника. Подпятник А служит для укрепления пяты стойки и допускает только одно перемещение рассматриваемого твердого тела, а именно вращение этого тела вокруг оси стойки. Основание подпятника препятствует перемещению тела по вертикали вниз (вдоль оси стойки), а стенки подпятника препятствуют перемещению тела в плоскости, перпендикулярной к оси стойки. Реакция подпятника направлена по вертикали вверх, а реакция стенок подпятника лежит в горизонтальной плоскости, но направление ее в этой плоскости в общем случае неизвестно, поэтому при решении задач нужно разложить на две составляющие по направлениям осей и у, перпендикулярным к оси стойки.

б) Связь осуществляется при помощи неподвижного цилиндрического подшипника. Подшипник В не препятствует вращению тела вокруг оси и скольжению вдоль этой оси. Если трением пренебречь, то реакция подшипника (реакция цилиндрической поверхности его стенок) пересекает ось вращения тела и лежит в плоскости, перпендикулярной к этой оси; так как подшипник не препятствует скольжению тела вдоль оси вращения, то нет и реакции, направленной вдоль этой оси.

9. Связь осуществляется при помощи сферического шарнира. Сферический шарнир не препятствует вращению тела вокруг любой оси, проходящей через центр О этого шарнира (точку О). Реакция сферического шарнира проходит через центр шарнира О, а направление ее заранее указать нельзя. Поэтому при решении задач эту реакцию приходится разлагать на три составляющие по направлениям выбранных осей координат.

Лекция 1

ВВЕДЕНИЕ. ОСНОВНЫЕ ПОНЯТИЯ СТАТИКИ

    Предмет механики.

    Основные понятия и аксиомы статики.

    Связи и реакции связей.

Предмет механики

Механика  это наука, изучающая основные законы механического движения, т.е. законы изменения взаимного расположения материальных тел или частиц в сплошной среде с течением времени. Содержанием курса теоретической механики в техническом вузе является изучение равновесия и движения абсолютно твердых тел, материальных точек и их систем. Теоретическая механика является базой для многих обще-профессиональных дисциплин (сопротивление материалов, детали машин, теория машин и механизмов и др.), а также имеет самостоятельное мировоззренческое и методологическое значение. Иллюстрирует научный метод познания закономерностей окружающего нас мира – от наблюдения к математической модели, её анализ, получение решений и их применение в практической деятельности.

Курс теоретической механики традиционно делится на три части:

Статика  изучает правила эквивалентного преобразования и условия равновесия систем сил.

Кинематика  рассматривает движение тел с геометрической стороны, без учета сил, вызывающих это движение.

Динамика  изучает движение тел в связи с действующими на них силами.

Основные задачи статики:

    Изучение методов преобразования одних систем сил в другие, эквивалентные данным.

    Установление условий равновесия систем сил.

Основные понятия и аксиомы статики

Сила  мера механического воздействия одного тела на другое. Физическая природа сил в механике не рассматривается.

Сила задается модулем, направлением и точкой приложения. Обозначается большими буквами латинского алфавита:
 модуль силы. Анали-

тически силу можно задать ее проекциями на оси координат: , , , а направление в пространстве  направляющими косинусами:
,
,
.

Совокупность нескольких сил, действующих на твердое тело, называется системой сил . Две системы сил эквивалентны () между собой, если, не нарушая состояния тела, одну систему сил можно заменить другой.

Сила, эквивалентная данной системе сил, называется равнодействующей :
. Не всегда систему сил можно заменить равнодействующей.

Систему сил, приложенную к свободному твердому телу, находящемуся в равновесии, и не выводящую его из этого состояния, называют уравновешенной системой сил
~ 0.

Абсолютно твердое тело  тело, у которого расстояние между любыми двумя точками остается неизменным.

Аксиомы:


Следствие : Точку приложения силы можно переносить вдоль линии действия силы.

Доказательство:

К телу в точке А приложена сила . Добавим в точке В систему сил,
:
.
, но
, следовательно,
. Следствие доказано.

    Две силы, приложенные к телу в одной точке, имеют равнодействующую, проходящую через эту точку и равную их геометрической сумме.

,

,

Из этой аксиомы следует, что силу можно разложить на любое количество составляющих сил по заранее выбранным направлениям.

    Силы взаимодействия двух тел равны по модулю и направлены по одной прямой в противоположные стороны.

    Равновесие деформируемого тела не нарушится, если это тело отвердеет.

Иными словами, необходимые условия равновесия деформируемых и абсолютно твердых тел совпадают, что позволяет применять получаемые результаты для реальных тел и конструкций, не являющихся абсолютно твердыми.

Связи и реакции связей

Тело называется свободным , если его перемещение в пространстве ничем не ограничено. В противном случае тело называется несвободным , а тела, ограничивающие перемещения данного тела,  связями . Силы, с которыми связи действуют на данное тело, называются реакциями связей .

Основные виды связей и их реакции:

Реакция гладкой поверхности направлена по нормали к этой поверхности (перпендикулярна общей касательной).

Реакция перпендикулярна опирающейся поверхности.

    Идеальная нить (гибкая, невесомая, нерастяжимая):

Примеры: моделирует трос, канат, цепь, ремень,…

Реакция идеальной нити направлена по нити к точке подвеса.

    Идеальный стержень (жесткий, невесомый стержень, на концах которого шарниры):

Реакция связи направлена по стержню.

В отличие от нити стержень может работать и на сжатие.

    Цилиндрический шарнир:

Такая связь позволяет телу перемещаться вдоль оси, поворачиваться вокруг оси шарнира, но не позволяет точке закрепления перемещаться в плоскости, перпендикулярной оси шарнира. Реакция лежит в плоскости, перпендикулярной оси шарнира, и проходит через нее. Положение этой реакции не определено, но она может быть представлена двумя взаимно перпендикулярными составляющими.

    Сферический шарнир:

Такая связь не дает точке закрепления тела перемещаться ни в одном из направлений. Положение реакции не определено, но она может быть представлена тремя взаимно перпендикулярными составляющими.

    Подпятник:

Реакция данной связи задается аналогично предыдущему случаю.

    Жесткая заделка:

Такая связь препятствует перемещению и повороту вокруг точки закрепления. Контакт тела со связью осуществляется по поверхности. Имеем распределенную систему сил реакции, которая, как будет показано, может быть заменена одной силой и парой сил.

Аксиома освобождаемости от связей:

Литература: [1 , §13];

[2 , §13];

[ 3 , п.1.11.4].