Как называется слияние гамет. Момент слияния гамет (образование генома)

Что же происходит до слияния гамет?

Чтобы ответить на этот вопрос нужно разобраться, что же представляет из себя "слияние гамет"?

Что такое "слияние гамет"

Слияние гамет (сингамия) или по-другому оплодотворение - это вид полового размножения, при котором происходит слияние половых клеток особей обоих полов (гамет). К примеру, у человека к половым клеткам относятся сперматозоиды (мужские) и яйцеклетка (женские). Все гаметы содержат хромосомы - их 23, при слияние половых клеток образуется зигота с набором хромосом 46. Зигота начинает делиться, благодаря чему появляются органы и системы нового человека.

Что же происходит до слияния гамет

Для того, чтобы произошло слияние гамет нужно, чтобы образовались половые клетки у мужской и у женской особи. Этот процесс называется гаметогенез, который проходит в половых железах. К примеру, у женской особи половые клетки образуются в яичниках (такой процесс называется оогенез), а мужские в семенниках (сперматогенез). Образование клеток проходит в несколько этапов: размножение, рост, созревание, формирование (у мужских особей).

  • 1 этап - размножение. На этом этапе клетки активно делятся и образуются половые клетки, которые еще имеют диплоидный набор хромосом (то есть у них набор хромосом полный, как и у всех клеток организма). Этот этап у мужских особей происходит в период полового созревания и продолжается всю жизнь. У женских особей общее количество половых клеток, которые будут формироваться в процессе ее репродуктивной деятельности закладываются еще в эмбрионе.
  • 2 этап - рост. На данном этапе увеличивается цитоплазма клеток. Накапливаются питательные вещества и удваивается набор хромосом.
  • 3 этап - созревание. На этом этапе происходит мейоз - то есть это деление клеток, при котором уменьшается вдвое набор хромосом. Клетки становятся с гаплоидным набором хромосом (то есть с одинарным набор хромосом).
  • 4 этап - формирование. Выделяют этот этап в процессе формирования сперматогенеза.
    Таким образом, чтобы произошло слияние гамет нужно, чтобы образовались половые клетки мужской и женской особи. Процесс их образования очень сложный и удивительно интересный.

Возникает при перекомбинации (перемешивании) генов отца и матери. Является разновидностью наследственной изменчивости, только не передается по наследству в полной мере.


Источники:

  • Кроссинговер при мейозе (гомологичные хромосомы тесно сближаются и меняются участками).
  • Независимое расхождение хромосом при мейозе (каждая пара гомологичных хромосом расходится независимо от других пар).
  • Случайное слияние гамет при оплодотворении.

Примеры

У цветка ночная красавица есть ген красного цвета лепестков А, и ген белого цвета а. Организм Аа имеет розовый цвет лепестков. Таким образом, у ночной красавицы нет гена розового цвета, розовый цвет возникает при сочетании (комбинации) красного и белого гена.


У человека есть наследственное заболевание серповидноклеточная анемия. АА - норма, аа - смерть, Аа - СКА. При СКА человек не может переносить повышенных физических нагрузок, при этом он не болеет малярией, т.е. возбудитель малярии малярийный плазмодий не может питаться неправильным гемоглобином. Такой признак полезен в экваториальном поясе; для него нет гена, он возникает при сочетании генов А и а.

ОПЛОДОТВОРЕНИЕ

Сущность процесса оплодотворения состоит в слиянии женской и мужской гамет в одну клетку - зиготу, которая является не только клеткой, но и становится одноклеточным зародышем.

Слияние гамет может произойти только при условии совместного действия многих биологических факторов. Циклы развития по­ловых клеток должны протекать синхронно так, чтобы сперма­тозоиды и яйцеклетки созревали и выделялись в одни и те же сроки.

Оплодотворению предшествует осеменение - процесс, приво­дящий к контакту мужской и женской половых клеток. Спер­матозоиды становятся подвижными только после того, как они

попадают в жидкость, являющуюся секретом семенных пузырь­ков, предстательной железы и куперовых желез. У человека спер­матозоиды вводятся в верхнюю часть влагалища, откуда им пред­стоит пройти до маточных труб, в верхней части которых про­исходит встреча и слияние гамет. В одном эякуляте у человека содержится до 250-300 млн сперматозоидов, но только неболь­шой доле из них удается приблизиться к яйцеклетке. Первое препятствие, с которым встречается сперматозоид -~ это естес­твенная кислотность верхней части влагалища, создающая бак­терицидную среду. Семенная жидкость, однако, действует в ка­честве буфера против кислотности и очень быстро (в течение нескольких секунд) изменяет рН среды от 4,3 до 7,2. Некоторые спермин достигают устья маточной трубы уже через 30 мин после осеменения. Столь быстрое продвижение сперматозоидов не может быть объяснено только собственным активным движением, так как их скорость равна лишь 2-4 мм в мин. В этом случае продвижению способствуют спазматические сокращения гладких мышц матки, действие места соединения матки с маточной тру­бой в качестве клапана, а также способность спермиев двигаться против слабого тока жидкости (положительный реотаксис).

Необходимо также принимать во внимание, что обычно канал шейки матки заполнен густой слизью, преобладающей в течение большей части менструального цикла. Она имеет щелочную ре­акцию и способствует проникновению спермиев в матку благо­даря способности изменять состояние (физико-химические ха­рактеристики) мицеллярной сетеподобной структуры слизи под влиянием женских половых гормонов.

По мере продвижения сперматозоиды подвергаются специ­альному воздействию со стороны тканей женских половых ор­ганов, которое обеспечивает им в дальнейшем проникновение через яйцевые оболочки (капаситация). Природа его остается не совсем ясной.

Окруженное клетками лучистого венца овулировавшее яйцо попадает в маточную трубу благодаря усиленной мышечной ак­тивности бахромчатого края устья воронки трубы, а также току жидкости, создаваемому ресничками мерцательного эпителия, и перемещается по направлению к широкой ее части (ампуле). Фолликулярные клетки, образующие лучистый венец, также иг­рают важную роль в направленном перемещении яйцеклетки. Тем не менее установлено, что движение яйцеклетки все же в значительной степени зависит от ее массы, так как другие тела такой же величины способны столь же эффективно перемещаться вниз по маточной трубе.

2.4.1. Жизнеспособность гамет

Жизнеспособность сперматозоидов и яйцеклетки в женских половых органах ограничена во времени. Уже сразу же после овуляции в яйцеклетке возникают изменения, которые можно охарактеризовать как старение. Так, в овоплазме появляется зер­нистость, которая быстро становится грубой, снижается уровень общего обмена, который резко возрастает лишь в том случае, если произойдет оплодотворение. Оплодотворение должно свер­шиться в течение первых суток после овуляции, в противном случае яйцеклетка потеряет жизнеспособность.

Сохранение подвижности сперматозоидов и продолжитель­ность их жизни не может быть приравнена к их способности оплодотворять. Подвижность сперматозоидов сохраняется гораздо дольше. Доказано, что в половых путях сперматозоиды сохраняют способность к оплодотворению в течение первых 1-2 сут, тогда как их подвижность вдвое дольше.

2.4.2. Слияние гамет

Слияние гамет происходит в широкой части маточной трубы. Встреча яйца и сперматозоида - дело случая. Оплодотворение становится возможным только после того, как мужская и женская гаметы пришли в соприкосновение, но перед этим сперматозоид должен пройти через яйцевые оболочки - прежде всего через клетки лучистого венца, затем через блестящую оболочку, и только после этого через плазматическую мембрану яйцеклетки. Однако сначала у сперматозоидов, как уже упоминалось ранее, возникает акросомная реакция, необходимой предпосылкой ко­торой служит капаситация.

Акросомная реакция сперматозоида вызывает растворение оболочек, окружающих яйцеклетку (рис. 2.7). Хотя ее развитие не до конца ясно, имеются сведения, что начало реакции ини­циируется увеличением концентрации ионов Са +2 в сперматозо­иде во время оплодотворения. Повышение концентрации ионов Са +2 активирует фосфолипазы оболочки и акросомальные про-теазы. Эти ферменты соответственно разрушают оболочки акро-сомы и апикальную плазмолемму сперматозоида, а также акти­вируют акросомальные ферменты. Считается, что акросома со­держит, по крайней мере, три фермента:

- фермент, растворяющей клетки лучистого венца (СРЕ);

- акросомин - трипсиноподоб-ный фермент, разрыхляющий блес­тящую оболочку яйцеклетки;

- гиалуронидазу - растворяю­щую блестящую оболочку.

Пройдя через zona pellucida , сперматозоид попадает в периви-теллиновое пространство, отделяю­щее блестящую оболочку от плаз-молеммы яйцеклетки (рис. 2.8). В месте образования контакта спер­матозоида с яйцеклеткой, установ­ление которого облегчается за счет микроворсинок яйцеклетки, образу­ется выпячивание плазмолеммы, из­вестной под названием бугорка оп­лодотворения. После слияния плаз­матических мембран яйцеклетки и

сперматозоида бугорок оплодотворения втягивается, внося го­ловку сперматозоида в овоплазму. Сперматозоид при этом ли­шается большинства цитоплазматических структур, а именно: хвоста, митохондрий вставочной части, остатков акросомы. Ос­тается не совсем ясным, сохраняются ли у него центриоли.

После проникновения сперматозоида в яйцеклетку происходит подготовка молекул ДНК к возобновлению синтетических про­цессов, морфологически выражающаяся в набухании высококон­денсированного ядра, сопровождающимся раскручиванием хро-матиновых нитей. Уже в течение первых 12 ч наблюдается на­бухание ядер мужской и женской гамет (пронуклеусов), миграция их к центру яйцеклетки и появление хорошо заметных ядрышек. Затем, после исчезновения ядерных оболочек, окружавших про-нуклеусы, они сближаются друг с другом и происходит смешение материнских и отцовских хромосом (сингамия), являющееся пос­ледней стадией процесса оплодотворения.

Объединение генетического материала сперматозоида и яй­цеклетки с образованием нового одноклеточного организма - зиготы, знаменуется следующими важными событиями:

Гаплоидные наборы хромосом гамет объединяются в дип­лоидный набор зиготы;

Отцовская наследственность объединяется с материнской наследственностью;

Сперматозоид, вероятнее всего, вносит в овоплазму цент­риоли, которые становятся клеточным центром зиготы;

Сперматозоид активирует яйцеклетку, и поэтому зигота при­обретает высокий уровень обменных процессов.

2.4.3. Реакции оплодотворения

В процессе эволюции у животных возникло множество раз­нообразных биомеханизмов, характеризующих особенности раз­личных аспектов оплодотворения. Ярким подтверждением ска­занного являются результаты изучения способов, с помощью которых яйцеклетка предотвращает полиспермию, т. е. смешение своего генетического материала с генетическим материалом более чем одного сперматозоида. Так, некоторые виды животных (хвос­татые амфибии, рептилии и птицы) выработали специальные механизмы, позволяющие яйцеклеткам инактивировать ядра из­быточных сперматозоидов. Яйцеклетки же большинства позво­ночных с помощью поверхностного слоя кортикальных гранул научились предотвращать полиспермию.

У животных при моноспермном оплодотворении первая ре­акция, возникающая в ответ на слияние сперматозоида с яйцом, состоит в быстром изменении электрических свойств плазмолеммы яйцеклетки. Так, Cross и Elinson (1980) установили, что у лягушки мембранный потенциал яйдеклетки изменяется от -28 до +8 мВ уже через несколько секунд после слияния со сперматозоидом и остается положительным в течение 20 мин., препятствуя воз­никновению полиспермии, тогда как снижение его у оплодот­воренного яйца делает ее возможной.

Уже через несколько минут после проникновения спермато­зоида в яйцеклетку возникает другая поверхностная реакция, препятствующая полиспермии - кортикальная. Суть ее заклю­чается в том, что кортикальные гранулы, начиная с той точки, в которой произошло слияние яйца со сперматозоидом, пере­мещаются к внутренней поверхности плазмолеммы, сливаясь с ней, а затем выделяют свое содержимое в перивителлиновое пространство.

Кроме того, полиспермия блокируется блестящей оболочкой, которая становится непроницаемой для сперматозоидов уже через несколько минут после развития кортикальной реакции. И хотя природа поверхностных реакций остается не совсем ясной, вы­сказываются предположения, что полисахаридные комплексы, входящие в состав кортикальных гранул, вызывают уплотнение блестящей оболочки или же разрушают на ней рецепторы к сперматозоидам, или даже непосредственно инактивируют зона-лизин сперматозоидов. Плазматическая мембрана яйцеклетки также становится непроницаемой для сперматозоидов, но это происходит только через несколько часов после изменения блес­тящей оболочки.

План

План

План

План

Изогамия представляет слияние двух одинаковых по форме планогамет (подвижных гамет). В результате копуляции образуется дикарион – подвижная планозигота, снабженная жгутиками. Она внедряется в ткани восприимчивого растения, теряет жгутики, становится неподвижной, одевается сплошной оболочкой и превращается в покоящуюся спору-цисту.

Типы полового процесса у грибов

Репродуктивное половое размножение

Половое размножение грибов состоит в слиянии мужских и женских половых гамет, в результате чего возникает зигота. При образовании зиготы ядра сливаются, происходит удвоение числа хромосом и наступает диплоидная (двойная) фаза с полным (парным) набором хромосом. Половые спороношения грибов сопровождающиеся сменой ядерных фаз, называют телеоморфами, а всю совокупность стадий развития одного гриба - голоморфой. Споры полового размножения называют также мейоспорами, поскольку их образованию предшествует мейотическое деление ядра. Половой процесс состоит из трех стадий: плазмогамии, кариогамии и мейоза.

Плазмогамия представляет собой слияние клеток и объединение двух протопластов, которые приносят два различных ядра в одну клетку. При этом ядра тут же сливаются (кариогамия), но чаще сохраняют самостоятельность в течение определенного времени. Возникшая в результате копуляции клетка имеет два ядра (дикарион). Если дикарион даст начало новому мицелию, то клетки, его образующие, будут сохранять состояние дикариона, такой мицелий называют дикариотичным. Затем наступает вторая фаза – кариогамия.

Кариогамия (диплоидизация) – слияние ядер в одно ядро зитогы. Получившееся при этом ядро содержит двойной набор хромосом, объединяющий хромосомы родительских ядер, и называется диплоидным. Если диплоидная клетка дает начало мицелию, то его клетки будут сохранять состояние диплоида, т.е. сформируется диплоидный мицелий.

Мейоз (редукция) – на определенной стадии развития (неодинаковой у разных грибов) диплоидное ядро претерпевает редукционное деление, в результате чего в цикле восстанавливается гаплоидное число хромосом. Таким образом, для грибов характерно чередование в цикле развития гаплоидного и диплоидного состояния, или ядерных фаз: от копуляции до редукции – диплоидная фаза; от редукции до новой копуляции – гаплоидная фаза.

Все многообразие форм полового размножения грибов может быть сведено к трем основным типам: гаметогамия, геметангиогамия и соматогамия.

Гаметогамия представляет собой слияние гамет, образующихся в гаметангиях или голых гамет. Этот тип полового процесса характерен для низших грибов и может протекать в виде изогамии, гетерогамии или оогамии.


При созревании цисты происходит кариогамия и возникает диплоидное ядро. Впоследствии осуществляется его редукционное деление, затем образовавшиеся гаплоидные ядра делятся, возникает многоядерная клетка – зооспорангий. Вокруг каждого гаплоидного ядра обособляются участки (комочки) цитоплазмы – будущие зооспоры. При полном созревании оболочка зооспорангия разрывается, и подвижные зооспоры выбрасываются наружу. У некоторых наиболее примитивных грибов (слизевики) появляется диплоидный амебоид.

Гетерогамия представляет слияние двух подвижных морфологически разнящихся гамет. Продуктом полового процесса является циста.

Оогамия б олее сложная форма полового процесса, при которой крупные неподвижные яйцеклетки, формирующиеся в оогониях, оплодотворяются мелкими подвижными сперматозоидами, развивающимися в антеридиях. Оогоний имеет шаровидную форму и одет довольно толстой оболочкой, в которой заметны более тонкие места – поры. Через них происходит впоследствии оплодотворение. Первоначально сплошное многоядерное содержимое оогония распадается затем на несколько одноядерных яйцеклеток, свободно лежащих в виде шаров. Внутри оболочки иногда остается только одна яйцеклетка, на образование которой идет центральная часть плазмы. Мужская клетка – антеридий развивается на конце боковой ветви и представляет собой округлую или цилиндрическую клетку, развивающуюся на том же мицелии или на другом, со многими клеточными ядрами, но не дифференцированную на обособленные гаметы. Антеридий к моменту созревания плотно соприкасается с оогонием и пускает через поры отростки, после чего содержимое антеридия поступает внутрь яйцеклетки и затем осуществляется плазмогамия и кариогамия, которые не разделены во времени. После оплодотворения яйцеклетки превращаются в покоящиеся клетки – ооспоры с толстой, часто скульптурированной оболочкой. При прорастании происходит редукционное деление диплоидного ядра и образование гаплоидных ядер. Гаплоидные ядра поочередно делятся, возникает многоядерный зооспорангий. Ооспоры могут возникать на наружном мицелии экзогенно или внутри тканей в межклетниках – эндогенно.

Гаметангиогамия илиангиогамия представляет собой слияние двух не дифференцированных на гаметы структур, содержащих несколько ядер и имеющих противоположные половые знаки. Этот тип полового процесса характерен для низших грибов класса Зигомицеты, а также для высших грибов класса Аскомицеты. Гаметангиогамию у зигомицетов чаще всего называют зигогамией. Она характеризуется полным слиянием двух внешне одинаковых контактирующих гаметангиев. Гаметангии образуются как вздутия на вершине двух совместимых гиф или ветвей гиф, которые направлены друг и другу и контактируют друг с другом. Стенка между ними растворяется и содержимое смешивается. Образуется одна клетка, в которой происходит кариогамия. Образующаясязигоспора (зигота) покрывается толстой оболочкой и прорастает после периода покоя.

Плазмогамия и кариогамия не разделены во времени и следуют непосредственного друг за другом, в результате чего образуется диплоидная зигота. При прорастании зиготы имеет место мейоз, и весь жизненный цикл этих грибов протекает в гаплоидной фазе.

У примитивных форм аскомицетов половой процесс гаметангиогамия сходен с зигогамией у Зигомицетов. Гаметангии разного пола морфологически сходны или малоразличимы и представляют выросты или веточки мицелия. После их слияния сразу происходит кариогамия и сумки развиваются непосредственно из зиготы. Однако, в отличие от зигомицетов, в многоядерных гаметангиях сливаются только два ядра (нет множественной кариогамии), зигота не переходит в состояние покоя, а сразу развивается в сумку. Таким образом, в цикле развития низших аскомицетов есть только гаплоидная и диплоидная фазы. У высших аскомицетов плазмогамия и кариогамия разделены во времени и пространстве. У них есть дифференциация и усложнение строения гаметангиев. Мужской половой орган называют антеридием, а женский – архикарпом, он состоит из цилиндрической части – аскогона и его выроста – трихогины, через которую переливается содержимое антеридия. Из продукта слияния двух половых клеток начинают развиваться короткие нити мицелия, аскогенные гифы, в которые строго синхронно делясь поступают дикарионы. Верхняя часть аскогенной гифы загибается в виде крючка и в ней происходит последнее деление пары ядер. Из образовавшихся четырех ядер два остаются в верхушечной клетке, которая отделяется перегородкой. Одно ядро поступает в крючок, другое – в нижнюю часть аскогенной гифы. Верхушечная часть аскогенной гифы увеличивается в размерах и развивается в сумку, в ней происходит слияние дикариона в одно диплоидное ядро. Ядро из крючка поступает в нижнюю часть аскогенной гифы под материнской клеткой и снова образует дикарион. Образовавшееся диплоидное ядро делится редукционно, за мейозом следует еще одно митотическое деление аскоспоры. Одновременно с образованием сумок происходит их оплетение гаплоидным мицелием, формируется плодовое тело – аскокарп.

Соматогамия представляет собой слияние двух клеток вегетативного мицелия. Половые органы отсутствуют, а половую функцию выполняют соматические клетки. Слияние чаще всего происходит путем образования анастомозов между гифами. Половой процесс этого типа характерен для базидиальных грибов и заключается в слиянии мицелиев разного полового знака. Слияние мицелия происходит на ранних стадиях прорастания базидиоспор. Базидиоспоры обычно одноядерны и имеют гаплоидный набор хромосом. После прорастания базидиоспоры в ростковую трубку происходит слияние ростковых трубок мицелиев разных половых знаков, т.к. большинство базидиомицетов гетероталличны (разнополые). Так же как у сумчатых грибов, плазмогамия и кариогамия у базидиомицетов значительно разделены во времени. В результате слияния двух гаплоидных мицелиев вскоре после прорастания базидиоспор происходит слияние их цитоплазмы, но кариогамии при этом не происходит, а ядра ассоциируются строго попарно, образуя так называемые дикарионы, также как это имеет место в аскогенных гифах аскомицетов. Дальнейшее развитие мицелия осуществляется в дикариофитном состоянии. Дикариофитная стадия занимает большую часть цикла развития базидиомицетов. Таким образом, мицелий большинства базидиомицетов проходит три хорошо выраженные стадии: гаплоидную, дикариофитную и диплоидную.

Развитию базидии предшествует слияние пары ядер дикариона в одно диплоидное ядро. Участок гифы, в котором происходит это слияние, отделяется перегородкой и образует материнскую клетку базидии. Она несколько увеличивается в размерах и в ней происходит два последовательных деления ядра, одно из которых мейотическое, в результате чего образуется 4 ядра. В это же время на поверхности базидии образуется 4 выроста, вздувающихся на концах, в них поступают по одному ядру. Эти выросты, содержащие ядра, образуют базидиоспоры.

Лекция № 4

СИСТЕМАТИКА ГРИБОВ

1. Краткая история изучения систематики грибов.

2. Царство Protozoa, или Protoctista.

3. Царство Chromista (Псевдогрибы).

4. Царство Mycota, Fungi (Настоящие грибы).

Отдел Chytrydiomycota (Хитридиомицеты).

Отдел Zygomycota (Зигомицеты).

1. Краткая история изучения систематики грибов

Со времен К.Линнея ("Система природы", 1735) грибы традиционно относили к царству растений. Однако уже к началу XIX века ряд ботаников указывали на то, что между грибами и растениями имеются существенные различия. Первым крупным систематиком был шведский ученый Э.Фриз, который положил основу номенклатуры грибов и дал описание многих видов. В 1851 г. Фриз предложил выделить грибы в самостоятельное царство живого мира. Однако у большинства биологов как XIX, так и первой половине XX века эта точка зрения поддержки не нашла.

Вместе с тем, бурное развитие физиологии и биохимии, особенно с середины XX века, накопление данных о строении и составе клетки грибов все более ставили под сомнение положение грибов в царстве растений и заставляло ученых вновь вернуться к вопросу о месте грибов в системе живого мира. Полученные новые данные по биохимии и физиологии грибов, по ультраструктуре их клетки, составу и строению клеточной оболочки позволили установить, что грибы по своему строению, характеру обмена и способу питания занимают промежуточное положение между животными и растениями и несут отдельные черты, как тех, так и других. Таким образом, на основании полученных данных, начиная с 70-х годов, грибы стали рассматривать как самостоятельное царство живого мира наряду с царствами животных и растений (Тахтаджан, 1973; Whittaker, Margulis, 1978; Margulis, Schwarz, 1982 и др.).

До последнего времени в нашей отечественной литературе и особенно в учебной чаще использовалась система, по которой царство грибов Mycota делилось на два отдела: Myxomycota (Слизевики) и Eu-mycota (настоящие грибы). В отделе настоящих грибов рассматривалось шесть классов: Chytridiomycetes, Oomycetes, Zigomycetes, Ascomycetes, Basidiomycetes, Deuteromycetes (Шевченко, 1978; Соколова, Семенкова, 1981; Шевченко, Цилюрик, 1986; Попкова, 1989; Федоров, 1992 и др.). В известном шеститомнике "Жизнь растений" под редакцией проф.М.В.Горленко в отделе Eu-mycota кроме уже упомянутых основных шести классов приводится также класс Trichomycetes. Кроме этого в специальной литературе встречалась также несколько модифицированная система Л. Олайва (Olive, 1975), где в царстве грибов выделяли три отдела:

Myxomycota, Oomycota с двумя классами и Eu-mycota с пятью классами (цитир.по Л.В.Гарибовой, 2002). Эта система соответствовала гипотезе о двух ветвях развития грибов. Отдел Myxomycota был отнесен Еdwards (1976) к Protozoa. В отечественной литературе отдел Myxomycota традиционно включался в царство грибов.

За последние 10-20 лет традиционные представления о царстве грибов, взгляды на их происхождение, эволюцию и филогенетические связи подвергались основательному пересмотру. Появилось большое количество систем грибов, предложенных микологами разных стран мира. В связи с предполагаемым происхождением грибов от жгутиковых организмов

Древнейшая форма размножения. Вегетативное размножение растений. Спорообразование. Бесполое размножение. Клонирование. Дрожжевые организмы. Оцените свои знания. Правильные ответы. Процесс воспроизведения себе подобных. Почкование. Вегетативное размножение. Деление надвое. Размножение. Что такое размножение. Размножение плодовых деревьев. Технология размножения комнатных растений. Клон. Окулировка шиповника.

«Способы размножения организмов» - Всё ли правильно изображено на рисунке. Гусь. Кошка. Половые клетки. Формы размножения. Обоеполые организмы. Сколько родителей у этих животных. Гаметы. Размножение животных. Деление. Живые организмы. Раздельнополые организмы. Животные. Зигота. Схема полового размножения. Формы бесполого размножения. Новые животные. Камбала. Родители. Процесс. Как размножаются живые организмы. Новое поколение. Половое размножение.

«Цитологические основы размножения» - Структуры. Деление мейоза. Амитоз. Митотический цикл. Схема митоза. Почки. Фазы митоза. Рост организма. Партеногенез. Политения. Подготовка к делению. Стволовые клетки. Обновляющаяся популяция. Мейоз. Жизненный цикл клетки. Эпидермис. Сущность бесполого размножения. Репродукция клеток. Продолжительность жизни. Значение. Самообновление организма. Бесполое размножение. Развитие организмов. Митоз. Процессы деления клеток.

«Размножение и развитие организмов» - Вспомните. Мейоз. Постэмбриональное. Сравните. Определите способ размножения. Типы размножения. Оплодотворение. Наборы хромосом. Образуйте пары. Онтогенез. Эмбриональное развитие. Самостоятельная работа. Термины по теме. Размножение организмов. Способ деления. Формы размножения. Лабораторная работа.

«Размножение живых организмов» - Половое размножение. Размножение, или самовоспроизведение–свойство всех живых организмов. Настоящая женщина. Размножение и развитие человека. Кишечнополостные. Тычинка. Многообразия живого мира. Форма полового процесса у простейших. Зачем природе понадобилось два пола. Схема оплодотворения. Эволюция размножения. Мужчины и женщины. Партеногенез. Изменчивость, необходимая для естественного отбора. Размножение живых организмов.

«Отличие бесполого размножения от полового» - Изогамия. Новые клетки образуются путем деления уже существующих. Гаметы. Размножение необходимо. В чём преимущество полового размножения над бесполым. Лабораторная работа. Партеногенез. Бесполое и половое размножение организмов. Клонирование. Бинарное деление. Задание: закончить предложение. Гаметогенез. Формы полового размножения. Что такое оплодотворение. Размножение бесполое. Формы бесполого размножения.